Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104205    DOI: 10.1088/1674-1056/abf0fe
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Variation of electron density in spectral broadening process in solid thin plates at 400 nm

Si-Yuan Xu(许思源)1,2, Yi-Tan Gao(高亦谈)2,3, Xiao-Xian Zhu(朱孝先)2,3, Kun Zhao(赵昆)2,4,†, Jiang-Feng Zhu(朱江峰)1,‡, and Zhi-Yi Wei(魏志义)2,3,4
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Material Laboratory, Dongguan 523808, China
Abstract  The generation of continuous spectrum centered at 400 nm from solid thin plates is demonstrated in this work. A continuum covering 365 nm to 445 nm is obtained when 125-μJ frequency-doubled Ti:sapphire laser pulses are applied to six thin fused silica plates at 1-kHz repetition rate. The generalized nonlinear Schrödinger equation simplified for forward propagation is solved numerically, the spectral broadening with the experimental parameters is simulated, and good agreement between simulated result and experimental measurement is achieved. The variation of electron density in the thin plate and the advantage of a low electron density in the spectral broadening process are discussed.
Keywords:  nonlinear spectral broadening      time-dependent nonlinear Schrödinger equation      self-phase modulation      electron density  
Received:  27 January 2021      Revised:  04 March 2021      Accepted manuscript online:  23 March 2021
PACS:  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405202), the Major Program of the National Natural Science Foundation of China (Grant No. 61690221), and the General Program of the National Natural Science Foundation of China (Grant No. 11774277).
Corresponding Authors:  Kun Zhao, Jiang-Feng Zhu     E-mail:  zhaokun@iphy.ac.cn;jfzhu@xidian.edu.cn

Cite this article: 

Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义) Variation of electron density in spectral broadening process in solid thin plates at 400 nm 2021 Chin. Phys. B 30 104205

[1] Musheghyan M, Lucking F, Cheng Z, Frei H and Assion A 2019 Opt. Lett. 44 1464
[2] Nisoli M, De Silvestri S and Svelto O 1996 Appl. Phys. Lett. 68 2793
[3] Thomas B and Krausz F 2000 Rev. Mod. Phys 72 545
[4] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X and Wei Z Y 2017 Opt. Lett. 42 474
[5] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C and Kung A H 2014 Optica 1 400
[6] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 592
[7] Rothenberg J E 1992 Opt. Lett. 17 1340
[8] Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Appl. Phys. B 79 673
[9] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun. 8 186
[11] Sansone G, Kelkensberg F, Perez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lepine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L'huillier A, Ivanov M Y, Nisoli M, Martin F and Vrakking M J 2010 Nature 465 763
[12] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[13] Liu Y Y, Zhao K, He P, Huang H D, Teng H and Wei Z Y 2017 Chin. Phys. Lett. 34 074204
[14] Canhota M, Weigand R and Crespo H M 2019 Opt. Lett. 44 1015
[15] Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633
[16] Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S and Mysyrowicz A 2002 Phys. Rev. Lett. 89 186601
[17] Cheng Y C, Lu C H, Lin Y Y and Kung A H 2016 Opt. Express 24 7224
[18] Aközbeka N, Scaloraa M, Bowdena C M and Chinb S L 2001 Opt. Commun. 191 353
[19] Adair R, Chase L L and Payne S A 1989 Phys. Rev. B 39 3337
[20] Trebino R, Delong K W, Fittinghoff D N, Sweetser J N, Krumbügel M A, Richman B A and Kane D J 1997 Rev. Sci. Instrum. 68 3277
[21] Huang H D, Teng H, Zhan M J, Xu S Y, Huang P, Zhu J F and Wei Z Y 2019 Acta Phys. Sin. 68 070602 (in Chinese)
[22] Liu W, Li C, Zhang Z, Kartner F X and Chang G 2016 Opt. Express 24 15328
[23] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y and Nubbemeyer T 2018 Opt. Lett. 43 5877
[24] Fibich G and Gaeta A L 2000 Opt. Lett. 25 335
[25] Berge L, Skupin S and Steinmeyer G 2008 Phys. Rev. Lett. 101 213901
[1] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[2] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[3] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[4] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[8] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
[9] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[10] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[11] Spectral broadening induced by intense ultra-short pulse in 4H-SiC crystals
Chun-hua Xu(徐春华), Teng-fei Yan(闫腾飞), Gang Wang(王刚), Wen-jun Wang(王文军), Jing-kui Liang(梁敬魁), Xiao-long Chen(陈小龙). Chin. Phys. B, 2016, 25(6): 064206.
[12] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[13] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[14] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军). Chin. Phys. B, 2015, 24(11): 116302.
[15] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
No Suggested Reading articles found!