Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源)1,2, Yi-Tan Gao(高亦谈)2,3, Xiao-Xian Zhu(朱孝先)2,3, Kun Zhao(赵昆)2,4,†, Jiang-Feng Zhu(朱江峰)1,‡, and Zhi-Yi Wei(魏志义)2,3,4
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Material Laboratory, Dongguan 523808, China
Abstract The generation of continuous spectrum centered at 400 nm from solid thin plates is demonstrated in this work. A continuum covering 365 nm to 445 nm is obtained when 125-μJ frequency-doubled Ti:sapphire laser pulses are applied to six thin fused silica plates at 1-kHz repetition rate. The generalized nonlinear Schrödinger equation simplified for forward propagation is solved numerically, the spectral broadening with the experimental parameters is simulated, and good agreement between simulated result and experimental measurement is achieved. The variation of electron density in the thin plate and the advantage of a low electron density in the spectral broadening process are discussed.
(Phase conjugation; photorefractive and Kerr effects)
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405202), the Major Program of the National Natural Science Foundation of China (Grant No. 61690221), and the General Program of the National Natural Science Foundation of China (Grant No. 11774277).
Corresponding Authors:
Kun Zhao, Jiang-Feng Zhu
E-mail: zhaokun@iphy.ac.cn;jfzhu@xidian.edu.cn
Cite this article:
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义) Variation of electron density in spectral broadening process in solid thin plates at 400 nm 2021 Chin. Phys. B 30 104205
[1] Musheghyan M, Lucking F, Cheng Z, Frei H and Assion A 2019 Opt. Lett.44 1464 [2] Nisoli M, De Silvestri S and Svelto O 1996 Appl. Phys. Lett.68 2793 [3] Thomas B and Krausz F 2000 Rev. Mod. Phys72 545 [4] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X and Wei Z Y 2017 Opt. Lett.42 474 [5] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C and Kung A H 2014 Optica1 400 [6] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett.24 592 [7] Rothenberg J E 1992 Opt. Lett.17 1340 [8] Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Appl. Phys. B79 673 [9] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature414 509 [10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun.8 186 [11] Sansone G, Kelkensberg F, Perez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lepine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L'huillier A, Ivanov M Y, Nisoli M, Martin F and Vrakking M J 2010 Nature465 763 [12] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A49 2117 [13] Liu Y Y, Zhao K, He P, Huang H D, Teng H and Wei Z Y 2017 Chin. Phys. Lett.34 074204 [14] Canhota M, Weigand R and Crespo H M 2019 Opt. Lett.44 1015 [15] Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys.70 1633 [16] Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S and Mysyrowicz A 2002 Phys. Rev. Lett.89 186601 [17] Cheng Y C, Lu C H, Lin Y Y and Kung A H 2016 Opt. Express24 7224 [18] Aközbeka N, Scaloraa M, Bowdena C M and Chinb S L 2001 Opt. Commun.191 353 [19] Adair R, Chase L L and Payne S A 1989 Phys. Rev. B39 3337 [20] Trebino R, Delong K W, Fittinghoff D N, Sweetser J N, Krumbügel M A, Richman B A and Kane D J 1997 Rev. Sci. Instrum.68 3277 [21] Huang H D, Teng H, Zhan M J, Xu S Y, Huang P, Zhu J F and Wei Z Y 2019 Acta Phys. Sin.68 070602 (in Chinese) [22] Liu W, Li C, Zhang Z, Kartner F X and Chang G 2016 Opt. Express24 15328 [23] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y and Nubbemeyer T 2018 Opt. Lett.43 5877 [24] Fibich G and Gaeta A L 2000 Opt. Lett.25 335 [25] Berge L, Skupin S and Steinmeyer G 2008 Phys. Rev. Lett.101 213901
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.