|
|
Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy |
Heng-An Zhou(周恒安)1,2, Li Cai(蔡立)1,2, Teng Xu(许腾)1,2, Yonggang Zhao(赵永刚)1,2, and Wanjun Jiang(江万军)1,2,† |
1 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; 2 Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China |
|
|
Abstract Compensated ferrimagnetic insulators are particularly interesting for enabling functional spintronic, optical, and microwave devices. Among many different garnets, Gd3Fe5O12 (GdIG) is a representative compensated ferrimagnetic insulator. In this paper, we will study the evolution of the surface morphology, the magnetic properties, and the magnetization compensation through changing the following parameters: the annealing temperature, the growth temperature, the annealing duration, and the choice of different single crystalline garnet substrates. Our objective is to find the optimized growth condition of the GdIG films, for the purpose of achieving a strong perpendicular magnetic anisotropy (PMA) and a flat surface, together with a small effective damping parameter. Through our experiments, we have found that the surface roughness approaching 0.15 nm can be obtained by choosing the growth temperature around 700 ℃, together with an enhanced PMA. We have also found the modulation of magnetic anisotropy by choosing different single crystalline garnet substrates which change the tensile strain to the compressive strain. A measure of the effective magnetic damping parameter (αeff=0.04±0.01) through a spin pumping experiment in a GdIG/Pt bilayer is also made. Through optimizing the growth dynamics of GdIG films, our results could be useful for synthesizing garnet films with a PMA, which could be beneficial for the future development of ferrimagnetic spintronics.
|
Received: 09 May 2021
Revised: 15 June 2021
Accepted manuscript online: 23 June 2021
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
85.70.Ge
|
(Ferrite and garnet devices)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206200 and 2016YFA0302300), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 51788104), the National Natural Science Foundation of China (Grant Nos. 11774194, 11804182, 51831005, and 11811082), Beijing Natural Science Foundation (Grant No. Z190009), and the Beijing Advanced Innovation Center for Future Chip (ICFC). |
Corresponding Authors:
Wanjun Jiang
E-mail: jiang_lab@tsinghua.edu.cn
|
Cite this article:
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军) Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy 2021 Chin. Phys. B 30 097503
|
[1] Geller S, Remeika J P, Sherwood R C, Williams H J and Espinosa G P 1965 Phys. Rev. 137 A1034 [2] Hansen P, Witter K and Tolksdorf W 1983 Phys. Rev. B 27 4375 [3] Avci C O, Rosenberg E, Caretta L, Büttner F, Mann M, Marcus C, Bono D, Ross C A and Beach G S D 2019 Nat. Nanotechnol. 14 561 [4] Yang Y, Liu T, Bi L and Deng L 2021 J. Alloys Compd. 860 158235 [5] O'Dell T H 1986 Rep. Prog. Phys. 49 589 [6] Moon K W, Kim D H, Yoo S C, Je S G, Chun B S, Kim W, Min B C, Hwang C and Choe S B 2015 Sci. Rep. 5 9166 [7] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309 [8] Ahmed A S, Lee A J, Bagués N, McCullian B A, Thabt A M A, Perrine A, Wu P K, Rowland J R, Randeria M, Hammel P C, McComb D W and Yang F 2019 Nano Lett. 19 5683 [9] Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J and Wang K L 2019 Nat. Electron. 2 182 [10] Hansen U H, Demidova V E and Demokritov S O 2009 Appl. Phys. Lett. 94 252502 [11] Collet M, Milly X D, Kelly O D A, Naletov V V, Bernard R, Bortolotti P, Youssef J B, Demidov V E, Demokritov S O, Prieto J L, Munoz M, Cros V, Anane A, Loubens G D and Klein O 2016 Nat. Commun. 7 10377 [12] Zhang D, Song W and Chai G 2017 J. Phys. D: Appl. Phys. 50 205003 [13] Yoshimoto T, Goto T, Shimada K, Iwamoto B, Nakamura Y, Uchida H, Ross C A and Inoue M 2018 Adv. Electron. Mater. 4 1800106 [14] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380 [15] Evelt M, Safranski C, Aldosary M, Demidov V E, Barsukov I, Nosov A P, Rinkevich A B, Sobotkiewich K, Li X, Shi J, Krivorotov I N and Demokritov S O 2018 Sci. Rep. 8 1269 [16] Ghosh S, Keyvavinia S, Roy W V, Mizumoto T, Roelkens G and Baets R 2012 Opt. Express 20 1839 [17] Wang X, Chotorlishvili L, Guo G H and Berakdar J 2018 J. Appl. Phys. 124 073903 [18] Srinivasan K and Stadler B J H 2018 Opt. Mater. Express 8 3307 [19] Dulal P, Block A D, Gage T E, Haldren H A, Sung S Y, Hutchings D C and Stadler B J H 2016 ACS Photonics 3 1818 [20] Mizumoto T, Baets R and Bowers J E 2018 MRS Bulletin 43 419 [21] Deb M, Popova E and Keller N 2019 Phys. Rev. B 100 224410 [22] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894 [23] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604 [24] Uchida K, Nonaka T, Kikkawa T, Kajiwara Y and Saitoh E 2013 Phys. Rev. B 87 104412 [25] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201 [26] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [27] Cornelissen L J, Liu J, Duine R A, Youssef J B and van Wees B J 2015 Nat. Phys. 11 1022 [28] Qin H, Both G J, Hämäläinen J, Yao L and van Dijken S 2018 Nat. Commun. 9 5445 [29] Chen J, Wang C, Liu C, Tu S, Bi L and Yu H 2019 Appl. Phys. Lett. 114 212401 [30] Vilela G L S, Abrao J E, Santos E, Yao Y, Mendes J B S, Rodríguez-Suárez R L, Rezende S M, Han W, Azevedo A and Moodera J S 2020 Appl. Phys. Lett. 117 122412 [31] Quindeau A, Avci C O, Liu W, Sun C, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y, Robinson J, Beach G S D and Ross C A 2017 Adv. Electron. Mater. 3 1600376 [32] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B, Gonzalez-Fuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S D and Ross C A 2018 Phys. Rev. Mater. 2 94405 [33] Ding S, Ross A, Lebrun R, Becker S, Lee K, Boventer I, Das S, Kurokawa Y, Gupta S, Yang J, Jakob G and Kläui M 2019 Phys. Rev. B 100 100406 [34] Ryu J, Lee S, Lee K J and Park B G 2020 Adv. Mater. 32 1907148 [35] Li G, Bai H, Su J, Zhu Z Z, Zhang Y and Cai J W 2019 APL Mater. 7 041104 [36] Shao Q, Grutter A, Liu Y, Yu G, Yang C Y, Gilbert D A, Arenholz E, Shafer P, Che X, Tang C, Aldosary M, Navabi A, He Q L, Kirby B J, Shi J and Wang K L 2019 Phys. Rev. B 99 104401 [37] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017 [38] Avci C O, Rosenberg E, Baumgartner M, Beran L, Quindeau A, Gambardella P, Ross C A and Beach G S D 2017 Appl. Phys. Lett. 111 072406 [39] Vélez S, Schaab J, Wörnle M S, Müller M, Gradauskaite E, Welter P, Gutgsell C, Nistor C, Degen C L, Trassin M, Fiebig M and Gambardella P 2019 Nat. Commun. 10 4750 [40] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J and Beach G S D 2020 Science 370 1438 [41] Kuila M, Hussain Z and Reddy V R 2019 J. Magn. Magn. Mater. 473 458 [42] Bayaraa T, Xu C, Campbell D and Bellaiche L 2019 Phys. Rev. B 100 214412 [43] Ortiz V H, Aldosary M, Li J, Xu Y, Lohmann M I, Sellappan P, Kodera Y, Garay J E and Shi J 2018 APL Mater. 6 121113 [44] Kalashnikova A M, Pavlov V V, Kimel A V, Kirilyuk A, Rasing T and Pisarev R V 2012 Low Temp. Phys. 38 863 [45] Ghanathe M, Kumar A, da Silva I and Yusuf S M 2021 J. Magn. Magn. Mater. 523 167632 [46] Srinivasan K, Radu C, Bilardello D, Solheid P and Stadler B J H 2020 Adv. Funct. Mater. 30 2000409 [47] Chen H, Cheng D, Yang H, Wang D, Zhou S, Shi Z and Qiu X 2020 Appl. Phys. Lett. 116 112401 [48] Zhang Y, Du Q, Wang C, Yan W, Deng L, Hu J, Ross C A and Bi L 2019 APL Mater. 7 081119 [49] Bauer J J, Rosenberg E R, Kundu S, Mkhoyan K A, Quarterman P, Grutter A J, Kirby B J, Borchers J A and Ross C A 2019 Adv. Electron. Mater. 6 1900820 [50] Pamyatnykh L A, Agafonov L Y, Belskii I E and Balymov K G 2017 IEEE Trans. Magn. 53 1 [51] Liu Y K, Wong H F, Lam K K, Chan K H, Mak C L and Leung C W 2018 J. Magn. Magn. Mater. 468 235 [52] Boutaba A, Lahoubi M, Varazashvili V and Pu S 2019 J. Magn. Magn. Mater. 476 551 [53] Strohm C, Linden P V D, Mathon O and Pascarelli S 2019 Phys. Rev. Lett. 122 127204 [54] Kudasov Y B and Kozabaranov R V 2019 Journal of Physics: Conference Series 1389 012109 [55] Liensberger L, Kamra A, Maier-Flaig H, Geprags S, Erb A, Goennenwein S T B, Gross R, Belzig W, Huebl H and Weiler M 2019 Phys. Rev. Lett. 123 117204 [56] Uemura M, Yamagishi T, Ebisu S, Chikazawa S and Nagata S 2008 Philos Mag (Abingdon) 88 209 [57] Dong B W, Cramer J, Ganzhorn K, Yuan H Y, Guo E J, Goennenwein S T B and Kläui M 2018 J. Phys. Condens. Matter 30 035802 [58] Zanjani S and Onbaşli M C 2020 J. Magn. Magn. Mater. 499 166108 [59] Finley J and Liu L 2020 Appl. Phys. Lett. 116 110501 [60] Zhou H A, Xu T, Bai H and Jiang W 2021 J. Phys. Soc. Jpn. 90 081006 [61] Man H, Shi Z, Xu G, Xu Y, Chen X, Sullivan S, Zhou J, Xia K, Shi J and Dai P 2017 Phys. Rev. B 96 100406 [62] Wang L W, Xie L S, Xu P X and Xia K 2020 Phys. Rev. B 101 165137 [63] Bozhko D A, Vasyuchka V I, Chumak A V and Serga A A 2020 Low Temp. Phys. 46 383 [64] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Youssef J B, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355 [65] Mendil J, Trassin M, Bu Q, Schaab J, Baumgartner M, Murer C, Dao P T, Vijayakumar J, Bracher D, Bouillet C, Vaz C A F, Fiebig M and Gambardella P 2019 Phys. Rev. Mater. 3 034403 [66] Chrisey D B and Hublerm G K 1994 Pulsed Laser Deposition of Thin Films (Wiley-Interscience) [67] Kuppusami P and Raghunathan V S 2006 Surf. Eng. 22 81 [68] Wu C N, Tseng C C, Lin K Y, Cheng C K, Yeh S L, Fanchiang Y T, Hong M and Kwo J 2018 AIP Adv. 8 055904 [69] Chen C C, Chen K H M, Fanchiang Y T, Tseng C C, Yang S R, Wu C N, Guo M X, Cheng C K, Huang S W, Lin K Y, Wu C T, Hong M and Kwo J 2019 Appl. Phys. Lett. 114 031601 [70] Tang C, Sellappan P, Liu Y, Xu Y, Garay J E and Shi J 2016 Phys. Rev. B 94 140403 [71] Wu C N, Tseng C C, Fanchiang Y T, Cheng C K, Lin K Y, Yeh S L, Yang S R, Wu C T, Liu T, Wu M, Hong M and Kwo J 2018 Sci. Rep. 8 11087 [72] Vilela G, Chi H, Stephen G, Settens C, Zhou P, Ou Y, Suri D, Heiman D and Moodera J S 2020 J. Appl. Phys. 127 115302 [73] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411 [74] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431 [75] Vasili H B, Casals B, Cichelero R, Maciá F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433 [76] Siddiqui S A, Han J, Finley J T, Ross C A and Liu L 2018 Phys. Rev. Lett. 121 057701 [77] Zhou H, Fan X, Ma L, Zhang Q, Cui L, Zhou S, Gui Y S, Hu C M and Xue D 2016 Phys. Rev. B 94 134421 [78] Dubs C, Surzhenko O, Thomas R, Osten J, Schneider T, Lenz K, Grenzer J, Hübner R and Wendler E 2020 Phys. Rev. Mater. 4 024416 [79] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008 [80] Crossley S, Quindeau A, Swartz A G, Rosenberg E R, Beran L, Avci C O, Hikita Y, Ross C A and Hwang H Y 2019 Appl. Phys. Lett. 115 172402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|