CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain-dependent resistance and giant gauge factor in monolayer WSe2 |
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏)† |
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures, where the gauge factor can reach as large as 2400. The observation of strain-dependent resistance and giant gauge factor is attributed to the emergence of nonzero Berry curvature dipole. Upon increasing strain, Berry curvature dipole can generate net orbital magnetization, which would introduce additional magnetic scattering, decreasing the mobility and thus conductivity. Our work demonstrates the strain engineering of Berry curvature and thus the transport properties, making monolayer WSe2 potential for application in the highly sensitive strain sensors and high-performance flexible electronics.
|
Received: 19 June 2021
Revised: 28 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.25.Dk
|
(Orbital, charge, and other orders, including coupling of these orders)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703703) and the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, and 11774004). |
Corresponding Authors:
Zhi-Min Liao
E-mail: liaozm@pku.edu.cn
|
Cite this article:
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏) Strain-dependent resistance and giant gauge factor in monolayer WSe2 2021 Chin. Phys. B 30 097203
|
[1] Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451 [2] Schaibley J R, Yu H, Clark G, et al. 2016 Nat. Rev. Mater. 1 16055 [3] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2017 Nat. Rev. Mater. 2 17033 [4] Splendiani A, Sun L, Zhang Y, et al. 2010 Nano Lett. 10 1271 [5] Mak K F, Lee C, Hone J, et al. 2010 Phys. Rev. Lett. 105 136805 [6] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703 [7] Lee G H, Yu Y J, Cui X, et al. 2013 ACS Nano 7 7931 [8] Pu J, Yomogida Y, Liu K K, et al. 2012 Nano Lett. 12 4013 [9] Cheng R, Jiang S, Chen Y, et al. 2014 Nat. Commun. 5 5143 [10] Yan W, Fuh H R, Lv Y, et al. 2021 Nat. Commun. 12 2018 [11] Johari P and Shenoy V B 2012 ACS Nano 6 5449 [12] Peelaers H and Van de Walle C G 2012 Phys. Rev. B 86 241401 [13] Scalise E, Houssa M, Pourtois G, et al. 2012 Nano Res. 5 43 [14] Conley H J, Wang B, Ziegler J I, et al. 2013 Nano Lett. 13 3626 [15] Ghorbani Asl M, Borini S, Kuc A, et al. 2013 Phys. Rev. B 87 235434 [16] He K, Poole C, Mak K F, et al. 2013 Nano Lett. 13 2931 [17] Cazalilla M A, Ochoa H and Guinea F 2014 Phys. Rev. Lett. 113 077201 [18] Wang L, Kutana A and Yakobson B I 2014 Annalen Der. Physik 526 L7 [19] Lanzillo N A, Simbeck A J and Nayak S K 2015 J. Phys.: Condens. Matter 27 175501 [20] Manzeli S, Allain A, Ghadimi A, et al. 2015 Nano Lett. 15 5330 [21] Rostami H, Roldán R, Cappelluti E, et al. 2015 Phys. Rev. B 92 195402 [22] Feng J, Qian X, Huang C W, et al. 2012 Nat. Photon. 6 866 [23] Wu W, Wang L, Li Y, et al. 2014 Nature 514 470 [24] Zhu H, Wang Y, Xiao J, et al. 2015 Nat. Nanotech. 10 151 [25] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30 [26] Levy N, Burke S A, Meaker K L, et al. 2010 Science 329 544 [27] Tsai M Y, Tarasov A, Hesabi Z R, et al. 2015 ACS Appl. Mater. Interfaces 7 12850 [28] Qin M S, Zhu P F, Ye X G, et al. 2021 Chin. Phys. Lett. 38 017301 [29] Sun Y, Wu S C, Ali M N, et al. 2015 Phys. Rev. B 92 161107 [30] Wu F, Lovorn T, Tutuc E, et al. 2018 Phys. Rev. Lett. 121 026402 [31] Park S E and Shrout T R 1997 J. Appl. Phys. 82 1804 [32] Rata A D, Herklotz A, Nenkov K, et al. 2008 Phys. Rev. Lett. 100 076401 [33] Thiele C, Dörr K, Bilani O, et al. 2007 Phys. Rev. B 75 054408 [34] Thiele C, Dörr K, Fähler S, et al. 2005 Appl. Phys. Lett. 87 262502 [35] Herklotz A, Plumhof J D, Rastelli A, et al. 2010 J. Appl. Phys. 108 094101 [36] Zomer P J, Guimarães M H D, Brant J C, et al. 2014 Appl. Phys. Lett. 105 013101 [37] Movva H C P, Rai A, Kang S, et al. 2015 ACS Nano 9 10402 [38] Li Y, Rao Y, Mak K F, et al. 2013 Nano Lett. 13 3329 [39] Mennel L, Furchi M M, Wachter S, et al. 2018 Nat. Commun. 9 516 [40] Martin F, ter Brake H J M, Lebrun L, et al. 2012 J. Appl. Phys. 111 104108 [41] Hou W, Azizimanesh A, Sewaket A, et al. 2019 Nat. Nanotechnol. 14 668 [42] Chen Y, Zhang Y, Keil R, et al. 2017 Nano Lett. 17 7864 [43] Molitor F, Güttinger J, Stampfer C, et al. 2007 Phys. Rev. B 76 245426 [44] Chen C T, Low T, Chiu H Y, et al. 2012 IEEE Electron Device Lett. 33 330 [45] Gazibegovic S, Car D, Zhang H, et al. 2017 Nature 548 434 [46] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 [47] Son J, Kim K H, Ahn Y H, et al. 2019 Phys. Rev. Lett. 123 036806 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|