Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114701    DOI: 10.1088/1674-1056/27/11/114701
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Effect of the asymmetric geometry on the wake structures of a pitching foil

LiMing Chao(朝黎明)1,2, Guang Pan(潘光)1,2, Dong Zhang(张栋)1,2
1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2 Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The two-dimensional wake produced by a time-periodic pitching foil with the asymmetric geometry is investigated in the present work. Through numerically solving nonlinear Navier-Stokes equations, we discuss the relationship among the kinematics of the prescribed motion, the asymmetric parameter K ranged as -1 ≤ K ≤ 1, and the types of the wakes including the mP+nS wake, the Bénard-von Kármán wake, the reverse Bénard-von Kármán wake, and the deviated wake. Compared with previous studies, we reveal that the asymmetric geometry of a pitching foil directly affects the foil's wake structures. The numerical results show that the reverse Bénard-von Kármán wake is easily deviated at K<0, while the symmetry-breaking of the reverse Bénard-von Kármán wake is delayed at K>0. Through the vortex dynamic method, we understand that the initial velocity of the vortex affected by the foil's asymmetry plays a key role in the deviation of the reverse Bénard-von Kármán wake. Moreover, we provide a theoretical model to predict the wake deviation of the asymmetric foil.

Keywords:  wake structures      asymmetric geometry      pitching foil  
Received:  21 June 2018      Revised:  28 August 2018      Accepted manuscript online: 
PACS:  47.63.-b (Biological fluid dynamics)  
  47.32.cd (Vortex stability and breakdown)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11502210, 51709229, 51879220, 51479170, and 61803306), the National Key Research and Development Program of China (Grant No. 2016YFC0301300), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ5092).

Corresponding Authors:  Guang Pan     E-mail:  panguang@nwpu.edu.cn

Cite this article: 

LiMing Chao(朝黎明), Guang Pan(潘光), Dong Zhang(张栋) Effect of the asymmetric geometry on the wake structures of a pitching foil 2018 Chin. Phys. B 27 114701

[1] Triantafyllou M S, Triantafyllou G S and Yue D K P 2000 Annu. Rev. Fluid Mech. 32 33
[2] Triantafyllou M S, Techet A H and Hover F S 2004 IEEE J. Oceanic Eng. 29 585
[3] Triantafyllou M S, Weymouth G D and Miao J M 2016 Annu. Rev. Fluid Mech. 48 1
[4] Tylor G K, Nudds R L and Thomas A L 2003 Nature 425 707
[5] Eloy C 2012 J. Fluid Struct. 30 205
[6] Lamb H 1932 Hydrodynamics (6th Edn.) (Cambridge:Cambridge University Press)
[7] Von Kámárn T and Buegers J M 1935 General Aerodynamic Theory-Perfect Fluids
[8] GodoyDiana R, Aider J L and Wesfreid J E 2008 Phys. Rev. E 77 016308
[9] He G Y, Wang Q, Zhang X and Zhang S G 2012 Acta Mech. Sin. 28 1551
[10] Andersen A, Bohr T, Schnipper T and Walther J H 2017 J. Fluid Mech. 812 R4
[11] Liang C L, Ou K, Premasuthan S, Jameson A and Wang Z J 2011 Comput. Fluids. 40 236
[12] Dong H, Mittal R and Najjar M 2006 J. Fluid Mech. 566 309
[13] Deng J and Caulfield C P 2015 Phys. Rev. E 91 043017
[14] Deng J, Sun L P and Shao X M 2015 Phys. Rev. E 92 063013
[15] Deng J, Sun L P, Teng L B, Pan D Y and Shao X M 2016 Phys. Fluids. 28 094101
[16] Bratt J B 1953 Flow Patterns in the Wake of an Oscillating Aerofoil
[17] Jones K D, Dohring M and Platzer M F 1998 AIAA J. 36 1240
[18] Lai J C S and Platzer M F 1999 AIAA J. 37 1529
[19] Von Ellenrieder K D and Pothos S 2008 Exp. Fluids 44 733
[20] Zheng Z C and Wei Z 2012 Phys. Fluids. 24 103601
[21] GodoyDiana R, Maris C, Aider J L and Wesfreid J E 2009 J. Fluid Mech. 622 23
[22] Jallas D and Marquet O 2017 Phys. Rev. E 95 063111
[23] Maris C, Thiria J E, Wesfreid J E and GodoyDiana R 2012 J. Fluid Mech. 710 659
[24] Zhu X J, He G W and Zhang X 2014 J. Fluid Mech. 751 164
[25] Shao X M, Pan D Y, Deng J and Yu Z S 2010 J. Hydrodyn. 22 147
[26] Dong H, Mittal R and Najjar M 2006 J. Fluid Mech. 566 309
[27] Mougin G and Magnaudet J 2002 Int. J. Multiphase Flow. 28 1837
[28] Chao L M, Zhang D and Pan G 2018 Mod. Phys. Lett. B 32 1850034
[29] Willamson C H K and Roshko A 1988 J. Fluid Struct. 2 355
[30] Schnipper T, Andersen A and Bohr T 2009 J. Fluid Mech. 633 411
[31] Koocgesfahari M M 1989 AIAA J. 27 1200
[32] Fish F E and Lauder G V 2006 Annu. Rev. Fluid Mech. 38 193
[33] Chao L M, Cao Y H and Pan G 2017 Fluid Dyn Res. 44 044501
[34] Saffman P 1992 Vortex Dynamics (Cambridge:Cambridge University Press)
[1] Theoretical calculation of the triple differential cross sections of the 2p orbital of argon in a coplanar highly asymmetric (e, 2e) reaction
Ge Zi-Ming (葛自明), Zhou Ya-Jun (周雅君), Lü Zhi-Wei (吕志伟), Wang Zhi-Wen (王治文). Chin. Phys. B, 2002, 11(9): 915-918.
No Suggested Reading articles found!