1 Ion Beam and Optical Physics Joint Laboratory of Xianyang Normal University and Institute of Modern Physics of CAS, Xianyang Normal University, Xianyang 712000, China; 2 School of Science, Xi'an Jiaotong University, Xi'an 710049, China; 3 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract X-ray emission from the collisions of 3 MeV Ar11+ ions with V, Fe, Co, Ni, Cu, and Zn is investigated. Both the x-rays of the target atom and projectile are observed simultaneously. The x-ray yield is extracted from the original count. The inner-shell ionization cross section is estimated by the binary encounter approximation model and compared with the experimental result. The remarkable result is that the Ar K-shell x-ray yield is diminished with the target atomic number increasing, which is completely opposite to the theoretical calculation. That is interpreted by the competitive consumption of the energy loss for the ionization of inner-shell electrons between the projectile and target atom.
(Atomic, molecular, and ion beam impact and interactions with surfaces)
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096, and 11605147) the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 20JK0975), the Scientific Research Plan of Science and Technology Department of Shaanxi Province, China (Grant Nos. 2021JQ-812 and 2020JM-624), Open Funds of MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions (Grant No. MPCEC201901), and Xianyang Normal University Science Foundation (Grant Nos. XSYK20009 and XSYK20024).
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安) X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity 2021 Chin. Phys. B 30 083201
[1] Littmark U and Sigmund P 1975 J. Phys. D8 241 [2] Ciricosta O, Vinkoe S M, Chung H K, Cho B I, Brown C R D, Burian T, Chalupský J, Engelhorn K, Falcone RW, Graves C, Hájková V Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B and Wark J S 2012 Phys. Rev. Lett.109 065002 [3] Liedke B, Heinig K H and Möller W 2013 Nucl. Instrum. Methods B316 56 [4] Schenkel T, Hamza A V, Barnes A V and Schneider D H 1999 Prog. Surf. Sci.61 23 [5] Wilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I Marques J P Kobus J, Krasheninnikov A V, Schleberger M and Aumayr F 2017 Phys. Rev. Lett.119 103401 [6] Siddique N, Waheed S, Daud M, Markwitz A and Hopke P K 2012 J. Radioanal. Nucl. Chem.293 351 [7] Zeng L X, Zhou X M, Cheng R, Wang X, Ren J R, Lei Y, Ma L D, Zhao Y T, Zhang X A and Xu Z F 2017 Sci. Rep.7 06891 [8] Guo Y P, Yang Z H, Hu B T, Wang X, Song Z Y, Xu Q M, Zhang B M, Chen J, Yang B and Yang J 2016 Sci. Rep.6 30644 [9] Miranda J, Luciob O G and Lugo-Licona M F 2007 Rev. Mex. Fis.53 29 [10] Siddique N, Waheed S, Daud M, Markwitz A and Hopke P K 2012 J. Radioanal. Nucl. Chem.293 351 [11] Briand J P, Billy L, Charles P and Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S and Ristor C 1990 Phys. Rev. Lett.65 159 [12] Schmidt-Böcking H, Schulz M, Cocke C L, Hagmann S and Stöckli M 1991 Phys. Rev. A44 1653 [13] Briand J P, Billy L, Charles P and Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S and Ristori C 1991 Phys. Rev. A43 565 [14] Briand J P, Thuriez S, Giardino G, Borsoni G, Froment M, Eddrief M and Sébenne C 1996 Phys. Rev. Lett.77 1452 [15] Briand J P, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C, Bardin S and Schneider D, Jin J, Khemliche H, Xie Z and Prior M 1996 Phys. Rev. A54 4136 [16] Burgdörfer J, Lerner P and Meyer F W 1991 Phys. Rev. A44 5674 [17] Garcia J D, Fortner R J and Kavanagh T M 1973 Rev. Mod. Phys.45 111 [18] Reyes-Herrera J and Miranda J 2009 Nucl. Instrum. Methods B267 1767 [19] Lapicki G 2009 J. Phys. B: At. Mol. Opt. Phys.42 145204 [20] Mitra D, Sarkar M, Bhattacharya D, Santra S, Mandal A C and Lapicki G 2010 Nucl. Instrum. Methods B268 450 [21] Kumar A, Agnihotri A N, Chatterjee S, Kasthurirangan S, Misra D, Choudhury R K, Sarkadi L and Tribedi L C 1991 Phys. Rev. A81 062709 [22] Gryzinski M 1965 Phys. Rev.138 A336 [23] Johnson D E, Basbas G and McDaniel F D 1979 At. Data Nucl. Data Tables24 1 [24] Brandt W and Lapicki G 1981 Phys. Rev. A23 1717 [25] Liu Z and Cipolla S J 1996 Comput. Phys. Commun.97 315 [26] Lapicki G 2002 Nucl. Instrum. Methods B189 8 [27] Barat M and Lichten W 1972 Phys. Rev. A6 211 [28] McGuire J H and Richard P 1973 Phys. Rev. A8 1374 [29] Lapicki G and Losonsky W 1977 Phys. Rev. A15 896 [30] Lapicki G and Losonsky W 1979 Phys. Rev. A20 481 [31] Ding X B, Wu C Q, Cao M X, Zhang D H, Zhang M W, Xue Y L, Yu D Y and Dong C Z 2020 Chin. Phys. B29 033101 [32] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q and Zhao Y T 2016 Chin. Phys. B25 023402 [33] Ismail A S, Dong C Z, Wang X L, Zhou W D and Wu Z W 2014 Chin. Phys. B23 023101 [34] Liu Y, Xu Z F, Wang X, Zeng L X and Liu T 2020 Acta Phys. Sin.69 043201 (in Chinese) [35] Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X and Xiao G Q 2018 Acta Phys. Sin.67 243201 (in Chinese) [36] Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G and Zeng L X 2017 Acta Phys. Sin.66 143401 (in Chinese) [37] Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L and Xiao G Q 2016 Sci. Sin.-Phys. Mech. Astron.46 073006 [38] He B, Liu C L, Yan J, Wang J G and Ning Y 2005 Acta Phys. Sin.54 3075 (in Chinese) [39] Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang YY, Ma X W and Xiao G Q 2018 Nucl. Instrum. Methods B416 94 [40] Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X and Sun Y B 2013 Nucl. Instrum. Methods B299 61 [41] X-ray data book: http://xdb.lbl.gov/, 2nd edn, January 2001 [42] Bearden J A 1967 Rev. Mod. Phys.39 78 [43] Krause M O 1979 J. Phys. Chem. Ref. Data8 307) [44] Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q and Zhao Y T 2017 Sci. Rep.9 5359 [45] Zhou X M, Cheng R, Lei Y, Liu S D, Deng J C, Sun Y B, Ren J R Wang Y Y, Zhao Y T and Xiao G Q 2014 Nucl. Instrum. Methods B340 11 [46] Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xe G, Wang Y, Liu S D and Xiao G Q 2013 Chin. Phys. B22 113402
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.