Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 083201    DOI: 10.1088/1674-1056/abe22f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity

Xian-Ming Zhou(周贤明)1,2, Jing Wei(尉静)1, Rui Cheng(程锐)3,†, Yan-Hong Chen(陈燕红)3, Ce-Xiang Mei(梅策香)1, Li-Xia Zeng(曾利霞)1, Chang-Hui Liang(梁昌慧)1, Yao-Zong Li(李耀宗)1, Yong-Tao Zhao(赵永涛)2,3, and Xiao-An Zhang(张小安)1,3,‡
1 Ion Beam and Optical Physics Joint Laboratory of Xianyang Normal University and Institute of Modern Physics of CAS, Xianyang Normal University, Xianyang 712000, China;
2 School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
3 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  X-ray emission from the collisions of 3 MeV Ar11+ ions with V, Fe, Co, Ni, Cu, and Zn is investigated. Both the x-rays of the target atom and projectile are observed simultaneously. The x-ray yield is extracted from the original count. The inner-shell ionization cross section is estimated by the binary encounter approximation model and compared with the experimental result. The remarkable result is that the Ar K-shell x-ray yield is diminished with the target atomic number increasing, which is completely opposite to the theoretical calculation. That is interpreted by the competitive consumption of the energy loss for the ionization of inner-shell electrons between the projectile and target atom.
Keywords:  ion-atom collision      near Bohr velocity      x-ray      coulomb ionization  
Received:  15 December 2020      Revised:  29 January 2021      Accepted manuscript online:  02 February 2021
PACS:  32.80.Aa (Inner-shell excitation and ionization)  
  32.30.Rj (X-ray spectra)  
  34.80.Dp (Atomic excitation and ionization)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11505248, 11775042, 11875096, and 11605147) the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 20JK0975), the Scientific Research Plan of Science and Technology Department of Shaanxi Province, China (Grant Nos. 2021JQ-812 and 2020JM-624), Open Funds of MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions (Grant No. MPCEC201901), and Xianyang Normal University Science Foundation (Grant Nos. XSYK20009 and XSYK20024).
Corresponding Authors:  Rui Cheng, Xiao-An Zhang     E-mail:  chengrui@impcas.ac.cn;zhangxiaoan2000@126.com

Cite this article: 

Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安) X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity 2021 Chin. Phys. B 30 083201

[1] Littmark U and Sigmund P 1975 J. Phys. D 8 241
[2] Ciricosta O, Vinkoe S M, Chung H K, Cho B I, Brown C R D, Burian T, Chalupský J, Engelhorn K, Falcone RW, Graves C, Hájková V Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B and Wark J S 2012 Phys. Rev. Lett. 109 065002
[3] Liedke B, Heinig K H and Möller W 2013 Nucl. Instrum. Methods B 316 56
[4] Schenkel T, Hamza A V, Barnes A V and Schneider D H 1999 Prog. Surf. Sci. 61 23
[5] Wilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I Marques J P Kobus J, Krasheninnikov A V, Schleberger M and Aumayr F 2017 Phys. Rev. Lett. 119 103401
[6] Siddique N, Waheed S, Daud M, Markwitz A and Hopke P K 2012 J. Radioanal. Nucl. Chem. 293 351
[7] Zeng L X, Zhou X M, Cheng R, Wang X, Ren J R, Lei Y, Ma L D, Zhao Y T, Zhang X A and Xu Z F 2017 Sci. Rep. 7 06891
[8] Guo Y P, Yang Z H, Hu B T, Wang X, Song Z Y, Xu Q M, Zhang B M, Chen J, Yang B and Yang J 2016 Sci. Rep. 6 30644
[9] Miranda J, Luciob O G and Lugo-Licona M F 2007 Rev. Mex. Fis. 53 29
[10] Siddique N, Waheed S, Daud M, Markwitz A and Hopke P K 2012 J. Radioanal. Nucl. Chem. 293 351
[11] Briand J P, Billy L, Charles P and Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S and Ristor C 1990 Phys. Rev. Lett. 65 159
[12] Schmidt-Böcking H, Schulz M, Cocke C L, Hagmann S and Stöckli M 1991 Phys. Rev. A 44 1653
[13] Briand J P, Billy L, Charles P and Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S and Ristori C 1991 Phys. Rev. A 43 565
[14] Briand J P, Thuriez S, Giardino G, Borsoni G, Froment M, Eddrief M and Sébenne C 1996 Phys. Rev. Lett. 77 1452
[15] Briand J P, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C, Bardin S and Schneider D, Jin J, Khemliche H, Xie Z and Prior M 1996 Phys. Rev. A 54 4136
[16] Burgdörfer J, Lerner P and Meyer F W 1991 Phys. Rev. A 44 5674
[17] Garcia J D, Fortner R J and Kavanagh T M 1973 Rev. Mod. Phys. 45 111
[18] Reyes-Herrera J and Miranda J 2009 Nucl. Instrum. Methods B 267 1767
[19] Lapicki G 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145204
[20] Mitra D, Sarkar M, Bhattacharya D, Santra S, Mandal A C and Lapicki G 2010 Nucl. Instrum. Methods B 268 450
[21] Kumar A, Agnihotri A N, Chatterjee S, Kasthurirangan S, Misra D, Choudhury R K, Sarkadi L and Tribedi L C 1991 Phys. Rev. A 81 062709
[22] Gryzinski M 1965 Phys. Rev. 138 A336
[23] Johnson D E, Basbas G and McDaniel F D 1979 At. Data Nucl. Data Tables 24 1
[24] Brandt W and Lapicki G 1981 Phys. Rev. A 23 1717
[25] Liu Z and Cipolla S J 1996 Comput. Phys. Commun. 97 315
[26] Lapicki G 2002 Nucl. Instrum. Methods B 189 8
[27] Barat M and Lichten W 1972 Phys. Rev. A 6 211
[28] McGuire J H and Richard P 1973 Phys. Rev. A 8 1374
[29] Lapicki G and Losonsky W 1977 Phys. Rev. A 15 896
[30] Lapicki G and Losonsky W 1979 Phys. Rev. A 20 481
[31] Ding X B, Wu C Q, Cao M X, Zhang D H, Zhang M W, Xue Y L, Yu D Y and Dong C Z 2020 Chin. Phys. B 29 033101
[32] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q and Zhao Y T 2016 Chin. Phys. B 25 023402
[33] Ismail A S, Dong C Z, Wang X L, Zhou W D and Wu Z W 2014 Chin. Phys. B 23 023101
[34] Liu Y, Xu Z F, Wang X, Zeng L X and Liu T 2020 Acta Phys. Sin. 69 043201 (in Chinese)
[35] Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X and Xiao G Q 2018 Acta Phys. Sin. 67 243201 (in Chinese)
[36] Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G and Zeng L X 2017 Acta Phys. Sin. 66 143401 (in Chinese)
[37] Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L and Xiao G Q 2016 Sci. Sin.-Phys. Mech. Astron. 46 073006
[38] He B, Liu C L, Yan J, Wang J G and Ning Y 2005 Acta Phys. Sin. 54 3075 (in Chinese)
[39] Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang YY, Ma X W and Xiao G Q 2018 Nucl. Instrum. Methods B 416 94
[40] Zhou X M, Zhao Y T, Cheng R, Wang Y Y, Lei Y, Wang X and Sun Y B 2013 Nucl. Instrum. Methods B 299 61
[41] X-ray data book: http://xdb.lbl.gov/, 2nd edn, January 2001
[42] Bearden J A 1967 Rev. Mod. Phys. 39 78
[43] Krause M O 1979 J. Phys. Chem. Ref. Data 8 307)
[44] Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q and Zhao Y T 2017 Sci. Rep. 9 5359
[45] Zhou X M, Cheng R, Lei Y, Liu S D, Deng J C, Sun Y B, Ren J R Wang Y Y, Zhao Y T and Xiao G Q 2014 Nucl. Instrum. Methods B 340 11
[46] Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xe G, Wang Y, Liu S D and Xiao G Q 2013 Chin. Phys. B 22 113402
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[6] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[7] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[8] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[11] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[12] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[13] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[14] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[15] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
No Suggested Reading articles found!