PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST |
Zong Xu(许棕)1,2, Zhen-Wei Wu(吴振伟)3,†, Ling Zhang(张凌)3,‡, Yue-Heng Huang(黄跃恒)1,2, Wei Gao(高伟)3, Yun-Xin Cheng(程云鑫)3,4, Xiao-Dong Lin(林晓东)1,2, Xiang Gao(高翔)1,2,3, Ying-Jie Chen(陈颖杰)3, Lei Li(黎嫘)3,4, Yin-Xian Jie(揭银先)1,2,3, Qing Zang(臧庆)1,2,3, Hai-Qing Liu(刘海庆)3, and EAST team3 |
1 Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China; 2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; 3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; 4 University of Science & Technology of China, Hefei 230031, China |
|
|
Abstract The core impurity confinement properties are experimentally investigated in the Experimental Advanced Superconducting Tokamak (EAST) plasma heated by lower hybrid wave (LHW) and electron cyclotron resonance heating (ECRH) (LHW+ECRH). It is shown that the impurity confinement time (τimp) in the L-mode plasma jointly heated by LHW and ECRH is weakly dependent on electron density but strongly dependent on the heating power, thus it is shorter than that in LHW-only heated L-mode plasma with the similar plasma parameters. The combined heating of LHW and ECRH can reduce the collisionality and indicates a more effective heating method for core τimp reduction and normalized poloidal beta (βP) improvement. It should be emphasized that in this high βP operation window the small ELM regime can be accessed, and an L-mode level τimp (40 ms-80 ms) and high βN (~1.7) can be obtained simultaneously. It means that this typical small ELMy H-mode regime has an advantage in avoiding the serious tungsten accumulation, and will be competitive in future long-pulse steady-state and high-performance operation with high-Z material plasma-facing components.
|
Received: 31 October 2020
Revised: 27 January 2021
Accepted manuscript online: 01 February 2021
|
PACS:
|
52.25.Fi
|
(Transport properties)
|
|
52.35.Ra
|
(Plasma turbulence)
|
|
52.25.Vy
|
(Impurities in plasmas)
|
|
52.20.Hv
|
(Atomic, molecular, ion, and heavy-particle collisions)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE031110 and 2017YFE0301205), the National Natural Science Foundation of China (Grant Nos. 11905146, 11775269, and 11805113), the Users with Excellence Program of Hefei Science Center, Chinese Academy of Sciences (Grant No. 2019HSC-UE014), and the Fund from the Shenzhen Clean Energy Research Institute, China. |
Corresponding Authors:
Zhen-Wei Wu, Ling Zhang
E-mail: zwwu@ipp.ac.cn;zhangling@ipp.ac.cn
|
Cite this article:
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST 2021 Chin. Phys. B 30 075205
|
[1] Isler R C 1984 Nucl. Fusion 24 1599 [2] Isler R C, Roman W L and Hodge W L 1985 Phys. Rev. Lett. 55 2413 [3] Philipps V 2011 J. Nucl. Mater. 415 S2 [4] Dux R, Neu R, Peeters A G, Pereverzev G, Mück A, Ryter F, Stober J and ASDEX Upgrade Team 2003 Plasma Phys. Control. Fusion 45 1815 [5] Leigheb M, Romanelli M, Gabellieri L, Carraro L, Mattioli M, Mazzotta C, Puiatti M E, Lauro-Taroni L, Marinucci M, Nowak S, Panaccione L, Pericoli V, Smeulders P, Tudisco O, Sozzi C, Valisa M and the FTU team 2007 Plasma Phys. Control. Fusion 49 1897 [6] Puiatti M E, Valisa M, Mattioli M, Bolzonella T, Bortolon A, Coffey I, Dux R, Hellermann M von, Monier-Garbet P, Nave M F F, Ongena J and contributors to the EFDA-JET Workprogramme 2003 Plasma Phys. Control. Fusion 45 2011 [7] Cui Z Y, Zhang K, Morita S, Ji X Q, Ding X T, Xu Y, Sun P, Gao J M, Dong C F, Zheng D L, Li Y G, Jiang M, Li D, Zhong W L, Liu Yi, Dong Y B, Song S D, Yu L M, Shi Z B, Fu B Z, Lu P, Huang M, Yuan B S, Yang Q W and Duan X R 2018 Nucl. Fusion 58 056012 [8] Odstrcil T, Howard N T, Sciortino F, Chrystal C, Holland C, Hollmann E, McKee G, Thome K E and Wilks T M 2020 Phys. Plasma 27 082503 [9] Perry M E, Brooks N H, Content D A, Hulse R A, Ali Mahdavi M and Moos H W 1991 Nucl. Fusion 31 1859 [10] Angioni C, Sertoli M, Bilato R, Bobkov V, Loarte A, Ochoukov R, Odstrcil T, Pütterich T, Stober J and The ASDEX Upgrade Team 2017 Nucl. Fusion 57 056015 [11] Scavino E, Bakos J, Weisen H and TCV Team 2004 Plasma Phys. Control. Fusion 46 857 [12] Parisot T, Guirlet R, Bourdelle C, Garbet X, Dubuit N, Imbeaux F and Thomas P R 2008 Plasma Phys. Control. Fusion 50 055010 [13] Xu Z, Wu Z W, Zhang L, Gao W, Ye Y, Chen K Y, Yuan Y, Zhang W, Yang X D, Chen Y J, Zhang P F, Huang J, Wu C R, Morita S, Oishi T, Zhang J Z, Duan Y M, Zang Q, Ding S Y, Liu H Q, Chen J L, Hu L Q, Xu G S, Guo H Y and the EAST team 2018 Nucl. Fusion 58 016001 [14] Zhang L, Morita S. Xu Z, Zhang P F, Zang Q, Duan Y M, Liu H Q, Zhao H L, Ding F, Oishi T, Gao W, Huang J, Yang X D, Chen Y J, Wu Z W, Xu P, Ding B J, Hu C D, Gong X Z, Hu L Q and EAST team 2017 Nucl. Mater. Energy 12 774 [15] Du H F, Ding S Y, Chen J L, Wang Y F, Lian H, Xu G S, Zhai X M, Liu H Q, Zang Q, Lyu B, Duan Y M, Qian J P and Gong X Z 2018 Nucl. Fusion 58 066011 [16] Yang Y L, Xiang N and Hu Y M 2017 Phys. Plasma 24 082503 [17] Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Berger-By G, Bouquey F, Clary J, Darbos C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Ségui J L, Bruschi A and Granucci G 2004 Phys. Rev. Lett. 93 255002 [18] Yuan Y, Hu L Q, Wang X G, Wang X J, Xu H D, Luo Z P, Chen K Y, Lin S Y, Duan Y M, Chang P X, Zhao H L, He K Y and Liang Y F 2016 Phys. Plasma 23 062503 [19] Liu Z X, Gao X, Jie Y X, Ding B J and Yang Y 2012 Plasma Sci. Technol. 14 278 [20] Nave M F F, Rapp J, Bolzonella T, Dux R, Mantsinen M J, Budny R, Dumortier P, von Hellermann M, Jachmich S, Koslowshi H R, Maddison G, Messiaen A, Monier-Garbet P, Ongena J, Puiatti M E, Strachan J, Telesca G, Unterberg B, Valisa M, de Vries P and contributors to the JET-EFDA Workprogramme 2003 Nucl. Fusion 43 1204 [21] Wan Y X, Li J G, Weng P D and EAST team 2006 Plasma Sci. Technol. 8 253 [22] Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D and LHCD team 2010 Plasma Sci. Technol. 12 118 [23] Liu F K, Ding B J, Li J G, Shan J F, Wang M, Liu L, Zhao L M, Li M H, Li Y C, Yang Y, Wu Z G, Feng J Q, Hu H C, Jia H, Huang Y Y, Wei W, Cheng M, Xu L, Zang Q, Lyu B, Lin S Y, Duan Y M, Wu J H, Peysson Y, Decker J, Hillariret J, Ekedahi A, Luo Z P, Qian J P, Shen B, Gong X Z, Hu L Q and the EAST team 2015 Nucl. Fusion 55 123022 [24] Zhao Y P, Zhang X J, Mao Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R and Wukitch S 2014 Fusion Eng. Des. 89 2642 [25] Wang X J, Liu F K, Shan J F, Xu H D, Wu D J, Li B, Wei W, Zhang J, Huang Y Y, Tang Y Y, Xu W Y, Hu H C, Wang J, Xu L, Zhang Y Y and Feng J Q 2015 Fusion Eng. Des. 96 181 [26] Chen K Y, Xu L Q, Hu L Q, Duan Y M, Li X Q, Yuan Y, Mao S T, Sheng X L and Zhao J L 2016 Rev. Sci. Instrum. 87 063504 [27] Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Oishi T, Goto M, Shen Y C, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N and Li J G 2015 Rev. Sci. Instrum. 86 123509 [28] Seguin F H, Petrasso R and Marmar E S 1983 Phys. Rev. Lett. 51 455 [29] Moret J M and Tore Supra 1992 Nucl. Fusion 32 1241 [30] Rice J E, Reinke M L, Gao C, Howard N T, Chilenski M A, Delgado-Aparicio L, Granetz R S, Greenward M J, Hubbard A E, Hughes J W, Lrby J H, Lin Y, Marmar E S, Mumgaard R T, Scott S D, Terry J L, Walk J R, White A E, Whyte D G, Wolfe S M and Wukitch S J 2015 Nucl. Fusion 55 033014 [31] Scavino E, Bakos J S, Dux R, Weisen H and TCV team 2003 Plasma Phys. Control. Fusion 45 1961 [32] Mattioli M, Giannella R, Myrnas R, Demichelis C, Denne-Hinnov B, Dudok De Wit T and Magyar G 1995 Nucl. Fusion 35 1115 [33] Leung W K, Rowan W L, Wiley J C, Bravenec R V, Gentle K W, Hodge W L, Patterson D M, Philliphs P E, Price T R and Richards B 1986 Plasma Phys. Control. Fusion 28 1753 [34] Cesario R, Amicucci L, Cardinali A, Castaldo C, Marinucci M, Napoli F, Paoletti F, De Arcangelis D, Ferrari M, Galli A, Gallo G, Pullara E, Schettini G and Tuccillo A A 2014 Nucl. Fusion 54 043002 [35] Dux R and Peeters A G 2000 Nucl. Fusion 40 1721 [36] Dumont R J and Giruzzi G 2004 Phys. Plasma 11 3449 [37] Wan B N, Liang Y F, Gong X Z, Xiang N, Xu G S, Sun Y W, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, Ding B J, Zang Q, Lyu B, Garofalo A M, Ekedahi A, Li M H, Ding F, Ding S Y, Du H F, Kong D F, Yu Y, Yang Y, Luo Z P, Huang J, Zhang T, Zhang Y, Li G Q, Xia T Y, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003 [38] Puiatti M E, Valisa M, Angioni C, Garzotti L, Mantica P, Mattiolo M, Carraro L, Coffey I, Sozzi C and JET-EFDA contributors 2006 Phys. Plasma 13 042501 [39] Andreev V F, Borschegovskij A A, Chistyakov V V, Dnestrovskij Y N, Gorbunov E P, Kasyanova N V, Lysenko S E, Melnikov A V, Myalton T B, Roy I N, Sergeev D S and Zenin V N 2016 Plasma Phys. Control. Fusion 58 055008 [40] Takenaga H, Higashijima S, Oyama N, Bruskin L G, Koide Y, Ide S, Shirai H, Sakamoto Y, Suzuki T, Hill K W, Rewoldt G, Kramer G J, Nazikian R, Takizuka T, Fujita T, Sakasa A, Kamada Y, Kubo H and the JT-60 Team 2003 Nucl. Fusion 43 1235 [41] Cao G M, Li Y D, Li Q, Zhang X D, Sun P J, Wu G J, Hu L Q and the EAST team 2015 Phys. Scr. 90 025603 [42] Villegas D, Guirlet R, Bourdelle C, Hoang G T, Garbet X and Sabot R 2010 Phys. Rev. Lett. 105 035002 [43] Shen Y C, Lyu B, Zhang H M, Li Y Y, Fu J, Vogel G, Wang X J, Xu H D, Wu D J, Zang Q, Liu H Q, Liu F K, Wan B N and Ye M Y 2019 Phys. Plasma 26 032507 [44] Marinoni A, Brunner S, Camenen Y, Coda S, Graves J P, Lapillonne X, Pochelon A, Sauter O and Villard L 2009 Plasma Phys. Control. Fusion 51 055016 [45] Huang Y H, et al., 2020 Nucl. Fusion (under review) [46] Gong X, Garofalo A M, Huang J, Qian J, Holcomb C T, Ekedah A, Maingi R, Li E, Zeng L, Zhang B, Chen J, Wu M, Du H, Li M, Zhu X, Sun Y, Xu G, Zang Q, Wang L, Zhang L, Liu H, Lyu B, Sun P, Ding S, Zhang X, Liu F, Zhao Y, Xiao B, Hu J, Hu C, Hu L, Li J, Wan B and the EAST team 2019 Nucl. Fusion 59 086030 [47] Xu G S, Yang Q Q, Yan N, Wang Y F, Xu X Q, Guo H Y, Maingi R, Wang L, Qian J P, Gong X Z, Chan V S, Zhang T, Zang Q, Li Y Y, Zhang L, Hu G H and Wan B N 2019 Phys. Rev. Lett. 122 255001 [48] Wang H Q, Xu G S, Wan B N, Ding S Y, Guo H Y, Shao L M, Liu S C, Xu X Q, Wang E, Yan N, Naulin V, Nielsen A H, Juul Rasmussen J, Candy J, Bravenes R, Sun Y W, Shi T H, Liang Y F, Chen R, Zhang W, Wang L, Chen L, Zhao N, Li Y L, LIU Y L, Hu G H and Gong X Z 2014 Phys. Rev. Lett. 112 185004 [49] Wang H Q, Xu G S, Guo H Y, Wan B N, Yan N, Ding S Y, Chen R, Zhang W, Wang L, Liu S C, Shao L M, Chen L, Liu Y L, Li Y L, Hu G H and Zhao N 2014 Nucl. Fusion 54 043014 [50] Gao X, Yang Y, Zhang T, Liu H Q, Li G Q, Ming T F, Liu Z X, Wang Y M, Zeng L, Han X, Liu Y K, Wu M Q, Qu H, Shen B, Zang Q, Yu Y W, Kong D F, Gao W, Zhang L, Cai H S, Wu X M, Hanada K, Zhong F B, Liang Y F, Hu C D, Liu F K, Gong X Z, Xiao B J, Wan B N, Zhang X D, Li J G and the EAST team 2017 Nucl. Fusion 57 056021 [51] Pütterich T, Dux R, Janzer M A, McDermott R M and ASDEX Upgrade team 2011 J. Nucl. Mater. 415 S334 [52] Xu Z, et al., 2020 Plasma Phys. Control. Fusion (under review) [53] Li M H, Ding B J, Liu F K, Shan J F, Wang M, Xu H D, Cesario R, Napoli F, Castaldo C, Cardinali A, Liu L, Zhao L M, Hu H C, Zhang X J, Li Y C, Wu Z G, Ma W D, Goniche M, Peysson Y, Ekedahl A, Zhang L, Lin S Y, Qian J P, Chen Y J, Yang Y, Feng J Q, Jia H, Wang Y F, Wu C B and the EAST team 2019 Plasma Phys. Control. Fusion 61 065005 [54] Li Y L, Xu G S, Wu Z W, Zhang B, Zhang L, Yang X D, Chen M W, Zhang T, Liu H Q, Wan B N, Gong X Z, Goniche M, Ekedahi A, Warrier M, Xiao C, Gao W, Ou J, Cao L, Liu C L, Wang M, Li M H, Li Y C, Xu Q, Liang Y F, Wang L, Sun Z, Xu J C, Feng W, Yan N, Chen R and EAST team 2018 Phys. Plasma 25 082503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|