Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 105203    DOI: 10.1088/1674-1056/ac935a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak

Ji-Chan Xu(许吉禅)1,†, Liang Wang(王亮)2, Guo-Sheng Xu(徐国盛)2, Yan-Min Duan(段艳敏)2, Ling-Yi Meng(孟令义)2, Ke-Dong Li(李克栋)2, Fang Ding(丁芳)2, Rui-Rong Liang(梁瑞荣)2, Jian-Bin Liu(刘建斌)2
1. School of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, China;
2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Divertor detachment achieved by injecting impurities or increasing density is always accompanied with various local radiation phenomena in the boundary or core plasma. This paper presents the formation and evolution of the high-field-side (HFS) radiation belts during the neon seeding plasma discharge in upper single null configuration with two directions of toroidal magnetic field in EAST tokamak. The neon mixed with deuterium seeding can induce the divertor detachment with strong radiation belts in the HFS scrape-off layer (SOL) region. With the increase of the radiation power, the plasma discharge will transit from H-mode to L-mode, and meanwhile the radiation belts move away from the near X-point to HFS SOL. When the radiation power is high enough, the radiation belts begin to move further to the other X-point along the HFS SOL, and even cause plasma disruption. The results indicate that the behavior of the radiation belts is related to the radiation power, plasma confinement performance and state of divertor detachment, which is useful for developing better feedback control methods to achieve high-performance radiative divertor operation mode.
Keywords:  high-field-side      radiation belts      neon seeding      EAST  
Received:  18 July 2022      Revised:  05 September 2022      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  94.30.Xy (Radiation belts)  
  52.25.Vy (Impurities in plasmas)  
  28.52.-s (Fusion reactors)  
Fund: Project supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant Nos. 2017YFE0301300 and 2019YFE03030000), the National Natural Science Foundation of China (Grant Nos. 12005004, 11922513, and U19A20113), and Anhui Provincial Natural Science Foundation (Grant No. 2008085QA38).
Corresponding Authors:  Ji-Chan Xu     E-mail:  jichanxu@aust.edu.cn

Cite this article: 

Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak 2022 Chin. Phys. B 31 105203

[1] Leonard A W 2018 Plasma Phys. Controlled Fusion 60 044001
[2] Pitcher C S and Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779
[3] Lipschultz B, LaBombard B, Marmar E, Pickrell M, Terry J, Watterson R and Wolfe S M 1984 Nucl. Fusion 24 977
[4] Luo Y, Ding F, Wang L, et al. 2020 Plasma Phys. Controlled Fusion 62 075005
[5] Stacey W M, Friis Z W, Petrie T W and Leonard A W 2005 Phys. Plasmas 12 072518
[6] Chankin A V 2004 Phys. Plasmas 11 1484
[7] Kallenbach A, Bobkov V, Braun F, Herrmann A, Hohnle H, McDermott R M, Neu R, Noterdaeme J M, Putterich T, Schweinzer J, Stober J, Strumberger E, Suttrop W, Wagner D and Zohm H 2012 IEEE T. Plasma Sci. 40 605
[8] Kallenbach A, Dux R, Fuchs J C, Fischer R, Geiger B, Giannone L, Herrmann A, Lunt T, Mertens V, McDermott R, Neu R, Puetterich T, Rathgeber S, Rohde V, Schmid K, Schweinzer J, Treutterer W and ASDEX Upgrade Team 2010 Plasma Phys. Controlled Fusion 52 055002
[9] Goetz J A, Lipschultz B, Pitcher C S, Terry J L, Bonoli P T, Rice J E and Wukitch S J 1999 J. Nucl. Mater. 266—269 354
[10] Guillemaut C, Lennholm M, Harrison J, Carvalho I, Valcarcel D, Felton R, Griph S, Hogben C, Lucock R, Matthews G F, Von Thun C P, Pitts R A and Wiesen S 2017 Plasma Phys. Controlled Fusion 59 045001
[11] Maddison G P, Giroud C, McCormick G K, et al. 2011 Nucl. Fusion 51 082001
[12] Brunner D, Burke W, Kuang A Q, LaBombard B, Lipschultz B and Wolfe S 2016 Rev. Sci. Instrum. 87 023504
[13] Wang L, Guo H Y, Ding F, et al. 2019 Nucl. Fusion 59 086036
[14] Li K D, Xu G S, Yuan Q P, et al. 2021 Nucl. Mater. Energy 26 100867
[15] Xu G S, Yuan Q P, Li K D, et al. 2020 Nucl. Fusion 60 086001
[16] Wu K, Yuan Q, Xu G, et al. 2021 Plasma Phys. Controlled Fusion 63 105004
[17] Wan B N, Li J G, Guo H Y, Liang Y F, Xu G S, Wang L, Gong X Z, Garofalo A and EAST Collaborators 2015 Nucl. Fusion 55 104015
[18] Wan B N, Liang Y F, Gong X Z, et al. 2017 Nucl. Fusion 57 102019
[19] Yao D M, Luo G N, Zhou Z B, Cao L, Li Q, Wang W J, Li L, Qin S G, Shi Y L, Liu G H and Li J G 2016 Phys. Script. T167 014003
[20] Wang L, Xu G S, Guo H Y, et al. 2012 Nucl. Fusion 52 063024
[21] Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W and Guo H Y 2016 Rev. Sci. Instrum. 87 083504
[22] Duan Y M, Hu L Q, Chen K Y, Du W, Zhang L and EAST Team 2013 J. Nucl. Mater. 438 S338
[23] Gao W, Huang J, Su J, Fu J, Chen Y, Gao W and Wu Z 2021 Chin. Phys. B 30 025201
[24] Mao H M, Ding F, Luo G N, Hu Z H, Chen X H, Xu F, Yang Z S, Chen J B, Wang L, Ding R, Zhang L, Gao W, Xu J C and Wu C R 2017 Rev. Sci. Instrum. 88 043502
[25] Chen J B, Duan Y M, Yang Z S, Wang L, Wu K, Li K D, Ding F, Mao H M, Xu J C, Gao W, Zhang L, Wu J H, Luo G N and EAST Team 2017 Chin. Phys. B 26 095205
[26] He T, Yang Z, Wang L, et al. 2021 Plasma Phys. Controlled Fusion 63 085001
[27] Eldon D, Wang H Q, Wang L, Barr J, Ding S, Garofalo A, Gong X Z, Guo H Y, Järvinen A E, Li K D, McClenaghan J, McLean A G, Samuell C M, Watkins J G, Weisberg D and Yuan Q P 2021 Nucl. Mater. Energy 27 100963
[28] Li K, Yang Z, Wang H, et al. 2021 Nucl. Fusion 61 066013
[29] Wang L, Xu G S, Hu J S, et al. 2021 J. Fusion Energ. 40 3
[30] Stangeby P C 2018 Plasma Phys. Controlled Fusion 60 044022
[31] Martin Y R, Takizuka T and ITPA CDBM H-mode Threshold Database Working Group 2008 J. Phy. Conf. Ser. 123 012033
[32] Ye Y, Xu G S, Tao Y Q, et al. 2021 Nucl. Fusion 61 116032
[33] Reimold F, Wischmeier M, Bernert M, Potzel S, Kallenbach A, Müller H W, Sieglin B and Stroth U 2015 Nucl. Fusion 55 033004
[34] Reimold F, Wischmeier M, Bernert M, Potzel S, Coster D, Bonnin X, Reiter D, Meisl G, Kallenbach A, Aho-Mantila L and Stroth U 2015 J. Nucl. Mater. 463 128
[35] Potzel S, Wischmeier M, Bernert M, Dux R, Reimold F, Scarabosio A, Brezinsek S, Clever M, Huber A, Meigs A and Stamp M 2015 J. Nucl. Mater. 463 541
[36] Kelly F, Maingi R, Maqueda R, Menard J and Paul S 2009 J. Nucl. Mater. 390—391 436
[37] Glöggler S, Wischmeier M, Fable E, Solano E R, Sertoli M, Bernert M, Calabró G, Chernyshova M, Huber A, Kowalska-Strzȩciwilk E, Lowry C, de la Luna E, Maggi C F, Stroth U, Sun H J, Reinke M L and Wiesen S 2019 Nucl. Fusion 59 126031
[1] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[2] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[5] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[8] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[9] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[10] Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak
Yongcai Shen(沈永才), Hongming Zhang(张洪明), Bo Lyu(吕波), Yingying Li(李颖颖), Jia Fu(符佳), Fudi Wang(王福地), Qing Zang(臧庆), Baonian Wan(万宝年), Pan Pan(潘盼), Minyou Ye(叶民友). Chin. Phys. B, 2020, 29(6): 065206.
[11] Plasma shape optimization for EAST tokamak using orthogonal method
Yuan-Yang Chen(陈远洋), Xiao-Hua Bao(鲍晓华), Peng Fu(傅鹏), Ge Gao(高格). Chin. Phys. B, 2019, 28(1): 015201.
[12] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[13] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[14] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[15] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
No Suggested Reading articles found!