PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak |
Ji-Chan Xu(许吉禅)1,†, Liang Wang(王亮)2, Guo-Sheng Xu(徐国盛)2, Yan-Min Duan(段艳敏)2, Ling-Yi Meng(孟令义)2, Ke-Dong Li(李克栋)2, Fang Ding(丁芳)2, Rui-Rong Liang(梁瑞荣)2, Jian-Bin Liu(刘建斌)2 |
1. School of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, China; 2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Divertor detachment achieved by injecting impurities or increasing density is always accompanied with various local radiation phenomena in the boundary or core plasma. This paper presents the formation and evolution of the high-field-side (HFS) radiation belts during the neon seeding plasma discharge in upper single null configuration with two directions of toroidal magnetic field in EAST tokamak. The neon mixed with deuterium seeding can induce the divertor detachment with strong radiation belts in the HFS scrape-off layer (SOL) region. With the increase of the radiation power, the plasma discharge will transit from H-mode to L-mode, and meanwhile the radiation belts move away from the near X-point to HFS SOL. When the radiation power is high enough, the radiation belts begin to move further to the other X-point along the HFS SOL, and even cause plasma disruption. The results indicate that the behavior of the radiation belts is related to the radiation power, plasma confinement performance and state of divertor detachment, which is useful for developing better feedback control methods to achieve high-performance radiative divertor operation mode.
|
Received: 18 July 2022
Revised: 05 September 2022
Accepted manuscript online:
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
94.30.Xy
|
(Radiation belts)
|
|
52.25.Vy
|
(Impurities in plasmas)
|
|
28.52.-s
|
(Fusion reactors)
|
|
Fund: Project supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant Nos. 2017YFE0301300 and 2019YFE03030000), the National Natural Science Foundation of China (Grant Nos. 12005004, 11922513, and U19A20113), and Anhui Provincial Natural Science Foundation (Grant No. 2008085QA38). |
Corresponding Authors:
Ji-Chan Xu
E-mail: jichanxu@aust.edu.cn
|
Cite this article:
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak 2022 Chin. Phys. B 31 105203
|
[1] Leonard A W 2018 Plasma Phys. Controlled Fusion 60 044001 [2] Pitcher C S and Stangeby P C 1997 Plasma Phys. Controlled Fusion 39 779 [3] Lipschultz B, LaBombard B, Marmar E, Pickrell M, Terry J, Watterson R and Wolfe S M 1984 Nucl. Fusion 24 977 [4] Luo Y, Ding F, Wang L, et al. 2020 Plasma Phys. Controlled Fusion 62 075005 [5] Stacey W M, Friis Z W, Petrie T W and Leonard A W 2005 Phys. Plasmas 12 072518 [6] Chankin A V 2004 Phys. Plasmas 11 1484 [7] Kallenbach A, Bobkov V, Braun F, Herrmann A, Hohnle H, McDermott R M, Neu R, Noterdaeme J M, Putterich T, Schweinzer J, Stober J, Strumberger E, Suttrop W, Wagner D and Zohm H 2012 IEEE T. Plasma Sci. 40 605 [8] Kallenbach A, Dux R, Fuchs J C, Fischer R, Geiger B, Giannone L, Herrmann A, Lunt T, Mertens V, McDermott R, Neu R, Puetterich T, Rathgeber S, Rohde V, Schmid K, Schweinzer J, Treutterer W and ASDEX Upgrade Team 2010 Plasma Phys. Controlled Fusion 52 055002 [9] Goetz J A, Lipschultz B, Pitcher C S, Terry J L, Bonoli P T, Rice J E and Wukitch S J 1999 J. Nucl. Mater. 266—269 354 [10] Guillemaut C, Lennholm M, Harrison J, Carvalho I, Valcarcel D, Felton R, Griph S, Hogben C, Lucock R, Matthews G F, Von Thun C P, Pitts R A and Wiesen S 2017 Plasma Phys. Controlled Fusion 59 045001 [11] Maddison G P, Giroud C, McCormick G K, et al. 2011 Nucl. Fusion 51 082001 [12] Brunner D, Burke W, Kuang A Q, LaBombard B, Lipschultz B and Wolfe S 2016 Rev. Sci. Instrum. 87 023504 [13] Wang L, Guo H Y, Ding F, et al. 2019 Nucl. Fusion 59 086036 [14] Li K D, Xu G S, Yuan Q P, et al. 2021 Nucl. Mater. Energy 26 100867 [15] Xu G S, Yuan Q P, Li K D, et al. 2020 Nucl. Fusion 60 086001 [16] Wu K, Yuan Q, Xu G, et al. 2021 Plasma Phys. Controlled Fusion 63 105004 [17] Wan B N, Li J G, Guo H Y, Liang Y F, Xu G S, Wang L, Gong X Z, Garofalo A and EAST Collaborators 2015 Nucl. Fusion 55 104015 [18] Wan B N, Liang Y F, Gong X Z, et al. 2017 Nucl. Fusion 57 102019 [19] Yao D M, Luo G N, Zhou Z B, Cao L, Li Q, Wang W J, Li L, Qin S G, Shi Y L, Liu G H and Li J G 2016 Phys. Script. T167 014003 [20] Wang L, Xu G S, Guo H Y, et al. 2012 Nucl. Fusion 52 063024 [21] Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W and Guo H Y 2016 Rev. Sci. Instrum. 87 083504 [22] Duan Y M, Hu L Q, Chen K Y, Du W, Zhang L and EAST Team 2013 J. Nucl. Mater. 438 S338 [23] Gao W, Huang J, Su J, Fu J, Chen Y, Gao W and Wu Z 2021 Chin. Phys. B 30 025201 [24] Mao H M, Ding F, Luo G N, Hu Z H, Chen X H, Xu F, Yang Z S, Chen J B, Wang L, Ding R, Zhang L, Gao W, Xu J C and Wu C R 2017 Rev. Sci. Instrum. 88 043502 [25] Chen J B, Duan Y M, Yang Z S, Wang L, Wu K, Li K D, Ding F, Mao H M, Xu J C, Gao W, Zhang L, Wu J H, Luo G N and EAST Team 2017 Chin. Phys. B 26 095205 [26] He T, Yang Z, Wang L, et al. 2021 Plasma Phys. Controlled Fusion 63 085001 [27] Eldon D, Wang H Q, Wang L, Barr J, Ding S, Garofalo A, Gong X Z, Guo H Y, Järvinen A E, Li K D, McClenaghan J, McLean A G, Samuell C M, Watkins J G, Weisberg D and Yuan Q P 2021 Nucl. Mater. Energy 27 100963 [28] Li K, Yang Z, Wang H, et al. 2021 Nucl. Fusion 61 066013 [29] Wang L, Xu G S, Hu J S, et al. 2021 J. Fusion Energ. 40 3 [30] Stangeby P C 2018 Plasma Phys. Controlled Fusion 60 044022 [31] Martin Y R, Takizuka T and ITPA CDBM H-mode Threshold Database Working Group 2008 J. Phy. Conf. Ser. 123 012033 [32] Ye Y, Xu G S, Tao Y Q, et al. 2021 Nucl. Fusion 61 116032 [33] Reimold F, Wischmeier M, Bernert M, Potzel S, Kallenbach A, Müller H W, Sieglin B and Stroth U 2015 Nucl. Fusion 55 033004 [34] Reimold F, Wischmeier M, Bernert M, Potzel S, Coster D, Bonnin X, Reiter D, Meisl G, Kallenbach A, Aho-Mantila L and Stroth U 2015 J. Nucl. Mater. 463 128 [35] Potzel S, Wischmeier M, Bernert M, Dux R, Reimold F, Scarabosio A, Brezinsek S, Clever M, Huber A, Meigs A and Stamp M 2015 J. Nucl. Mater. 463 541 [36] Kelly F, Maingi R, Maqueda R, Menard J and Paul S 2009 J. Nucl. Mater. 390—391 436 [37] Glöggler S, Wischmeier M, Fable E, Solano E R, Sertoli M, Bernert M, Calabró G, Chernyshova M, Huber A, Kowalska-Strzȩciwilk E, Lowry C, de la Luna E, Maggi C F, Stroth U, Sun H J, Reinke M L and Wiesen S 2019 Nucl. Fusion 59 126031 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|