Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 074202    DOI: 10.1088/1674-1056/abe3e5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state

Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远)
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  The precision measurement of Doppler frequency shifts is of great significance for improving the precision of speed measurement. This paper proposes a precision measurement scheme of tiny Doppler shifts by a parametric amplification process and squeezed vacuum state. This scheme takes a parametric amplification process and squeezed vacuum state into a detection system, so that the measurement precision of tiny Doppler shifts can exceed the Cramér-Rao bound of coherent light. Simultaneously, a simulation study is carried out on the theoretical basis, and the following results are obtained: for the signal light of Gaussian mode, when the amplification factor g=1 and the squeezed factor r=0.5, the measurement error of Doppler frequency shifts is 14.4% of the Cramér-Rao bound of the coherent light in our system. At the same time, when the local light mode and squeezed vacuum state mode are optimized, the measurement precision of this scheme can be further improved by $\sqrt {{\left( {2n + 1} \right)} / {\left( {n + 1} \right)}}$ times, where n is the mode-order of the signal light.
Keywords:  squeezed vacuum state      quantum metrology  
Received:  02 December 2020      Revised:  19 January 2021      Accepted manuscript online:  07 February 2021
PACS:  42.50.-p (Quantum optics)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
Corresponding Authors:  Zi-Jing Zhang, Yuan Zhao     E-mail:  zhangzijing@hit.edu.cn;zhaoyuan@hit.edu.cn

Cite this article: 

Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远) Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state 2021 Chin. Phys. B 30 074202

[1] Brousseau C, Mahdjoubi K and Emile O 2019 Electron. Lett. 55 709
[2] Zhuo H, Wen A J and Tu Z Y 2020 Opt. Commun. 470 125798
[3] Yang V, Gordon M, Qi B, et al. 2003 Opt. Express 11 794
[4] Lieb K P, Börner H G, Dewey M S, et al. 2016 Phys. Lett. B 215 50
[5] Liu F, Zhou Y, Yu J, Guo J, Wu Y, Xiao S, Wei D, Zhang Y, Jia X and Xiao M 2017 Appl. Phys. Lett. 110 021106
[6] Ono T and Hofmann H F 2010 Phys. Rev. A 81 033819
[7] Berry D W, Hall M J W and Wiseman H M 2013 Phys. Rev. Lett. 111 113601
[8] Du W, Jia J, Chen J F, Ou Z Y and Zhang W 2018 Opt. Lett. 43 1051
[9] Ou Z Y 2012 Phys. Rev. A 85 023815
[10] Manceau M, Leuchs G, Khalili F and Chekhova M 2017 Phys. Rev. Lett. 119 223604
[11] Hosten O and Kwiat P 2008 Science 319 787
[12] Pfeifer M and Fischer P 2011 Opt. Express 19 16508
[13] Delaubert V, Treps N, Lassen M, Harb C C, Fabre C, Lam P K and Bachor H A 2006 Phys. Rev. A 74 53823
[14] McKenzie K, Shaddock D A, McClelland D E, Buchler B C and Lam P K 2002 Phys. Rev. Lett. 88 231102
[15] Abadie J, Abbott B, Abbott R, et al. 2011 Nat. Phys. 7 962
[16] Shao C G, Chen Y F, Sun R, Cao L S, Zhou M K, Hu Z K, Yu C and Miiller H 2018 Phys. Rev. D 97 024019
[17] Otterstrom N, Pooser R C and Lawrie B J 2014 Opt. Lett. 39 6533
[18] Fabre C, Fouet J B, and Maitre A 2000 Opt. Lett. 25 76
[19] Treps N, Grosse N, Bowen P, Fabre C, Bachor H A and Lam P K 2003 Science 301 940
[20] Hsu M T L, Delaubert V, Lam P K and Bowen W P 2004 J. Opt. B Quantum Semiclassical Opt. 6 495
[21] Delaubert V, Treps N, Lassen M, Harb C C, Fabre C, Lam P K and Bachor H A 2006 Phys. Rev. A 74 053823
[22] Viza G I, Martínez-Rincón J, Howland G A, et al. 2013 Opt. Lett. 38 2949
[23] Starling D J, Dixon P B, Jordan A N, et al. 2010 Phys. Rev. A 82 063822
[24] Pinel O, Fade J, Braun D, et al. 2012 Phys. Rev. A 85 010101(R)
[1] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[4] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[5] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[6] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[7] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[10] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[11] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[12] Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Chao-Ping Wei(魏朝平), Xiao-Yu Hu(胡小玉), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(4): 040601.
[13] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[14] Towards quantum-enhanced precision measurements:Promise and challenges
Zhang Li-Jian (张利剑), Xiao Min (肖敏). Chin. Phys. B, 2013, 22(11): 110310.
[15] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
No Suggested Reading articles found!