Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067307    DOI: 10.1088/1674-1056/abee6c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films

Qi-Xun Guo(郭奇勋)1,2,†, Zhong-Xu Ren(任中旭)1,†, Yi-Ya Huang(黄意雅)1, Zhi-Chao Zheng(郑志超)1, Xue-Min Wang(王学敏)2, Wei He(何为)3, Zhen-Dong Zhu(朱振东)4,‡, and Jiao Teng(滕蛟)1,§
1 Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China;
2 Collaborative Innovation Center of Advanced Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 National Institute of Metrology, Beijing 100029, China
Abstract  A well-established method is highly desirable for growing topological insulator thin films with low carrier density on a wafer-level scale. Here, we present a simple, scalable method based on magnetron sputtering to obtain high-quality Bi2Te3 films with the carrier density down to 4.0×1013 cm-2. In contrast to the most-used method of high substrate temperature growth, we firstly sputtered Bi2Te3 thin films at room temperature and then applied post-annealing. It enables the growth of highly-oriented Bi2Te3 thin films with larger grain size and smoother interface. The results of electrical transport show that it has a lower carrier density as well as a larger coherent length (~228 nm, 2 K). Our studies pave the way toward large-scale, cost-effective production of Bi2Te3 thin films to be integrated with other materials in wafer-level scale for electronic and spintronic applications.
Keywords:  topological insulator      magnetron sputtering      post annealing      Kiessig fringes      low carrier density      weak antilocalization  
Received:  09 February 2021      Revised:  10 March 2021      Accepted manuscript online:  15 March 2021
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.20.Fz (Weak or Anderson localization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072030, 52071025, and 51871018), the Beijing Outstanding Young Scientists Projects (Grant No. BJJWZYJH01201910005018), Beijing Natural Science Foundation, China (Grant No. Z180014), the Science and Technology Innovation Team Program of Foshan (Grant No. FSOAA-KJ919-4402-0087), and Beijing Laboratory of Metallic Materials and Processing for Modern Transportation.
Corresponding Authors:  Zhen-Dong Zhu, Jiao Teng     E-mail:  zd_tsu@163.com;tengjiao@mater.ustb.edu.cn

Cite this article: 

Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟) Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films 2021 Chin. Phys. B 30 067307

[1] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[2] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[3] Hsieh D, Xia Y, D Qian, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Phys. Rev. Lett. 103 146401
[4] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X and Xue Q K 2009 Phys. Rev. Lett. 103 266803
[5] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[6] He X, Guan T, Wang X, Feng B, Cheng P, Chen L, Li Y and Wu K 2012 Appl. Phys. Lett. 101 123111
[7] Stephen G M, Vail O A, Lu J, Beck W A, Taylor P J and Friedman A L 2020 Sci. Rep. 10 4845
[8] Liu Y H, Chong C W, FanChiang C M, Huang J C, Han H C, Li Z, Qiu H, Li Y C and Liu C P 2017 ACS Appl Mater Interfaces 9 12859
[9] Yuan H T, Liu H W, Shimotani H, Guo H, Chen M W, Xue Q K and Iwasa Y 2011 Nano Lett. 11 2601
[10] Liao J, Ou Y B, Liu H W, He K, Ma X C, Xue Q K and Li Y Q 2017 Nat. Commun. 8 16071
[11] Harrison S E, Li S, Huo Y, Zhou B, Chen Y L and Harris J S 2013 Appl. Phys. Lett. 102 171906
[12] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
[13] Wu H, Zhang P, Deng P, Lan Q, Pan Q, Razavi S A, Che X, Huang L, Dai B, Wong K, Han X and Wang K L 2019 Phys. Rev. Lett. 123 207205
[14] Rosenbach D, Oellers N, Jalil A R, Mikulics M, Kölzer J, Zimmermann E, Mussler G, Bunte S, Grützmacher D, Lüth H and Schäpers T 2020 Adv. Electron. Mater. 6 2000205
[15] Liao Z, Brahlek M, Ok J M, Nuckols L, Sharma Y, Lu Q, Zhang Y and Lee H N 2019 APL Materials 7 041101
[16] Zhang S X, McDonald R D, Shekhter A, Bi Z X, Li Y, Jia Q X and Picraux S T 2012 Appl. Phys. Lett. 101 202403
[17] Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D and Gao X P 2014 Nano Lett. 14 6510
[18] Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301
[19] Zhu S, Meng D, Liang G, Shi G, Zhao P, Cheng P, Li Y, Zhai X, Lu Y, Chen L and Wu K 2018 Nanoscale 10 10041
[20] Björck M and Andersson G 2007 J. Appl. Crystallogr. 40 1174
[21] Chen J, He X Y, Wu K H, Ji Z Q, Lu L, Shi J R, Smet J H and Li Y Q 2011 Phys. Rev. B 83 241304
[22] Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K and Wang J 2013 Sci. Rep. 3 3060
[23] Wang W J, Gao K H and Li Z Q 2016 Sci. Rep. 6 25291
[24] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[25] Takagaki Y, Giussani A, Perumal K, Calarco R and Friedland K J 2012 Phys. Rev. B 86 125137
[26] Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S and Heiman D 2013 Appl. Phys. Lett. 102 012102
[27] Altshuler B L, Aronov A G and Khmelnitsky D E 1982 J. Phys. C: Solid State Phys. 15 7367
[28] Wang X, He H, Wang N and Miao L 2013 Appl. Surf. Sci. 276 539
[29] Kampmeier J, Borisova S, Plucinski L, Luysberg M, Mussler G and Grützmacher D 2015 Crystal Growth & Design 15 390
[30] Scanlon D O, King P D, Singh R P, de la Torre A, Walker S M, Balakrishnan G, Baumberger F and Catlow C R 2012 Adv. Mater. 24 2154
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[4] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[5] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[6] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[7] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[8] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[9] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[10] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[11] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[12] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[13] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[14] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[15] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
No Suggested Reading articles found!