Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 055201    DOI: 10.1088/1674-1056/abd16a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity

Shu-Xia Zhao(赵书霞)
Key Laboratory of Material Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  One of the novel phenomena of Ar/O2 inductively coupled plasma, the delta negative ions density profile is discovered by the fluid simulation at very low electronegativity. The anions delta is found to be formed by the collaboration of successive plasma transport phases. The plasma transport itself is affected by the delta, exhibiting many new phenomena. A new type of Helmholtz equation is devised to mathematically explain the delta forming mechanism. For revealing the physics behind, a revised spring oscillator dynamic equation has been constructed according to the Helmholtz equation, in a relevant paper [Zhao S X and Li J Z (2021) Chin. Phys. B 30 055202]. The investigation about the anions delta distribution is a nice prediction of new phenomenon in low temperature electronegative plasmas, waiting for the validation of related experiments.
Keywords:  inductively coupled plasma      Ar/O2 discharge      very low electronegativity      delta distribution of anions  
Received:  26 October 2020      Revised:  02 December 2020      Accepted manuscript online:  08 December 2020
PACS:  52.20.-j (Elementary processes in plasmas)  
  52.25.Fi (Transport properties)  
  52.65.-y (Plasma simulation)  
Corresponding Authors:  Shu-Xia Zhao     E-mail:  zhaonie@dlut.edu.cn

Cite this article: 

Shu-Xia Zhao(赵书霞) Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity 2021 Chin. Phys. B 30 055201

[1] Corr C S, Steen P G and Graham W G 2003 Plasma Sources Sci. Technol. 12 265
[2] Lee Y W, Lee H L and Chung T H 2011 J. Appl. Phys. 109 113302
[3] Corr C S, Gomez S and Graham W G 2012 Plasma Sources Sci. Technol. 21 055024
[4] Seo D C, Chung T H, Yoon H J and Kim G H 2001 J. Appl. Phys. 89 4218
[5] Kiehlbauch M W and Graves D B 2003 J. Vac. Sci. Technol. A 21 660
[6] Gudmundsson J T, Kouznetsov I G, Patel K K and Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
[7] Lichtenberg A J, Vahedi V, Lieberman M A and Rognlien T 1994 J. Appl. Phys. 75 2339
[8] Kouznetsov I G, Lichtenberg A J and Lieberman M A 1999 J. Appl. Phys. 86 4142
[9] Franklin R N and Snell J 2000 J. Phys. D: Appl. Phys. 33 1990
[10] Sheridan T E 1999 J. Phys. D: Appl. Phys. 32 1761
[11] Kaganovich I 2001 Phys. Plasmas 8 2540
[12] Zhao S X 2018 Phys. Plasmas 25 033516
[13] Gudmundsson J T 2004 J. App. D: Appl. Phys. 37 2073
[14] Turner M M 2015 Plasma Sources Sci. Technol. 24 035027
[15] Sirse N, Oudini N, Bendib A and Ellingboe A R 2016 Plasma Sources Sci. Technol. 25 04LT01
[16] Amemiya H, Yasuda N and Endou M 1994 Plasma Chem. Plasma Proc. 14 209
[17] Stoffels E, Stoffels W W, Vender D, Kando M, Kroesen G M W and de Hoog F J 1995 Phys. Rev. E 51 2425
[18] Liu W, Wen D Q, Zhao S X, Gao F and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035
[19] Supplementary material link.
[20] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and material processing, 2nd edn. (New York: Wiley-Interscience) p. 136
[21] Wang Y H, Liu W, Zhang Y R and Wang Y N 2015 Chin. Phys. B 24 095203
[22] Zhao S X, Gao F, Wang Y N and Bogaerts A 2013 Plasma Sources Sci. Technol. 22 015017
[23] Zhao S X, Gao F, Wang Y P, Wang Y N and Bogaerts A 2015 J. Appl. Phys. 118 033301
[24] Kono A 2002 Appl. Surf. Sci. 192 115
[25] Sheridan T E, Chabert P and Boswell R W 1999 Plasma Sources Sci. Technol. 8 457
[26] Chabert P and Sheridan T E 2000 J. Phys. D: Appl. Phys. 33 1854
[27] Chabert P and Braithwaite N 2011 Physics of radio-frequency plasmas (New York: Cambridge University press) p. 305
[28] Boris J P, Landsberg A M, Oran E S, Gardner J H 1993 LCPFCT-Flux-corrected transport algorithm for solving generalized continuity equations No. 6410-93-7192 (Washington DC: NRL) p. 7
[29] Du P A, Yu Y T and Liu J T 2011 Principle, modelling and application of finite element method, 2nd edn. (Beijing: National Defense Industry Press) p. 149 (in Chinese)
[30] Kaganovich I D, Economou D J, Ramamurthi B N and Midha V 2000 Phys. Rev. Lett. 84 1918
[31] Zhao S X and Li J Z 2021 Chin. Phys. B 30 055202
[32] Kerner B S and Osipov V V 1990 Sov. Phys. Usp. 33 679
[33] Kolobov V I and Economou D J 1998 Appl. Phys. Lett. 22 656
[34] Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G and Xin Y 2019 Phys. Plasmas 26 033502
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[3] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[4] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[5] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[6] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[7] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[8] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[9] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[10] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[11] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[12] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[13] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2014, 23(11): 115202.
[14] Changes of the electron dynamics in hydrogen inductively coupled plasma
Gao Fei (高飞), Liu Wei (刘巍), Zhao Shu-Xia (赵书霞), Zhang Yu-Ru (张钰如), Sun Chang-Sen (孙长森), Wang You-Nian (王友年). Chin. Phys. B, 2013, 22(11): 115205.
[15] Spatial variation behaviors of argon inductively coupled plasma during discharge mode transition
Gao Fei(高飞), Li Xue-Chun(李雪春), Zhao Shu-Xia(赵书霞), and Wang You-Nian(王友年) . Chin. Phys. B, 2012, 21(7): 075203.
No Suggested Reading articles found!