|
|
Anisotropic exciton Stark shift in hemispherical quantum dots |
Shu-Dong Wu(吴曙东)† |
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China |
|
|
Abstract The exciton Stark shift and polarization in hemispherical quantum dots (HQDs) each as a function of strength and orientation of applied electric field are theoretically investigated by an exact diagonalization method. A highly anisotropic Stark redshift of exciton energy is found. As the electric field is rotated from Voigt to Faraday geometry, the redshift of exciton energy monotonically decreases. This is because the asymmetric geometric shape of the hemispherical quantum dot restrains the displacement of the wave function to the higher orbital state in response to electric field along Faraday geometry. A redshift of hole energy is found all the time while a transition of electron energy from this redshift to a blueshift is found as the field is rotated from Voigt to Faraday geometry. Taking advantage of the diminishing of Stark effect along Faraday geometry, the hemispherical shapes can be used to improve significantly the radiative recombination efficiency of the polar optoelectronic devices if the strong internal polarized electric field is along Faraday geometry.
|
Received: 07 November 2020
Revised: 11 December 2020
Accepted manuscript online: 17 December 2020
|
PACS:
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
73.21.La
|
(Quantum dots)
|
|
94.20.Ss
|
(Electric fields; current system)
|
|
Corresponding Authors:
Shu-Dong Wu
E-mail: sdwu@yzu.edu.cn
|
Cite this article:
Shu-Dong Wu(吴曙东) Anisotropic exciton Stark shift in hemispherical quantum dots 2021 Chin. Phys. B 30 053201
|
[1] Miyata N, Watanabe H and Ichikawa M 2000 Appl. Phys. Lett. 77 1620 [2] Rodríguez A H, Trallero-Giner C, Ulloa S E and Marín-Antuña J 2001 Phys. Rev. B 63 125319 [3] Akazawa H 2003 Appl. Phys. Lett. 82 1464 [4] Haase J, Shinohara S, Mundra P, Risse G, Lyssenko V G, Fröb H, Hentschel M, Eychmüller A and Leo K 2010 Appl. Phys. Lett. 97 211101 [5] Li K H, Feng C and Choi H W 2014 Appl. Phys. Lett. 104 051107 [6] Mano T, Watanabe K, Tsukamoto S and Koguchi N 2000 Appl. Phys. Lett. 76 3543 [7] Kolobov A V, Shklyaev A A, Oyanagi H, Fons P, Yamasaki S and Ichikawa M 2001 Appl. Phys. Lett. 78 2563 [8] Prado S J, Trallero-Giner C, Alcalde A M, López-Richard V and Marques G E 2004 Phys. Rev. B 69 201310 [9] Bondarenko V and Zhao Y 2006 Phys. Rev. B 73 035335 [10] Li S, Shi L and Yan Z W 2020 Chin. Phys. B 29 097802 [11] Tanriseven S, Maaskant P and Corbett B 2008 Appl. Phys. Lett. 92 123501 [12] Li J, Yu H, Li Y, Wang F, Yang M and Wong S M 2011 Appl. Phys. Lett. 98 021905 [13] Lysak V V, Kang J H and Hong C H 2013 Appl. Phys. Lett. 102 061114 [14] Park W Y, Kwon Y, Cheong H W, Lee C and Whang K W 2016 J. Appl. Phys. 119 095502 [15] Anderson M A, Gorer S and Penner R M 1997 J. Phys. Chem. B 101 5895 [16] Leonard D, Pond K and Petroff P M 1994 Phys. Rev. B 50 11687 [17] Zhang Y, Feng C, Wang T and Choi H W 2016 Appl. Phys. Lett. 108 031110 [18] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T. H and Burrus C A 1984 Phys. Rev. Lett. 53 2173 [19] Fröhlich D, Wille R, Schlapp W and Weimann G 1987 Phys. Rev. Lett. 59 1748 [20] Yang X C and Xing Y 2020 Chin. Phys. B 29 087802 [21] Li X C, Ye C B, Gao J and Wang B 2020 Chin. Phys. B 29 087302 [22] Pedersen T G 2019 Phys. Rev. A 99 063410 [23] Tsai W C, Chen Y T, Lin C H, Hsu W T, Hsu Y S, Chen L C, Chen K H and Chang W H 2013 Phys. Rev. B 88 155323 [24] Shirasaki Y, Supran G J, Tisdale W A and Bulović V 2013 Phys. Rev. Lett. 110 217403 [25] Xu H and Lai Y C 2015 Phys. Rev. B 92 195120 [26] Pedersen T G 2016 Phys. Rev. B 94 125424 [27] Scharf B, Frank T, Gmitra M, Fabian J, Žutić I and Perebeinos V 2016 Phys. Rev. B 94 245434 [28] Zahra H, Elmaghroui D, Fezai I and Jaziri S 2016 J. Appl. Phys. 120 205702 [29] Shevlyagin A V, Goroshko D L, Chusovitin E A and Galkin N G 2016 Appl. Phys. Lett. 109 171101 [30] Pedersen T G 2019 Phys. Rev. B 100 155410 [31] Krüger S O, Stolz H and Scheel S 2020 Phys. Rev. B 101 235204 [32] Kamban H C, Pedersen T G and Peres N M R 2020 Phys. Rev. B 102 115305 [33] Henriques J C G, Kamban H C, Pedersen T G and Peres N M R 2020 Phys. Rev. B 102 035402 [34] Wang S Y, Kawakami Y, Simpson J, Stewart H, Prior K A and Cavenett B C 1993 Appl. Phys. Lett. 62 1715 [35] Thoma J, Liang B, Reyner C, Ochalski T, Williams D, Hegarty S P, Huffaker D and Huyet G 2013 Appl. Phys. Lett. 102 013120 [36] Zhu S, Lin S, Li J, Yu Z, Cao H, Yang C, Li J and Zhao L 2017 Appl. Phys. Lett. 111 171105 [37] Li C F, Shi K J, Xu M S, Xu X G and Ji Z W 2019 Chin. Phys. B 28 107803 [38] Chen P, Zhao D G, Jiang D S, Yang J, Zhu J J, Liu Z S, Liu W, Liang F, Liu S T, Xing Y and Zhang L Q 2020 Chin. Phys. B 29 034206 [39] Oukerroum A, Feddi E, Bailach J B, Martínez-Pastor J, Dujardin F and Assaid E 2010 J. Phys.: Condens. Matter 22 375301 [40] Gross E F, Zakharchenya B P and Kanskaya L M 1961 Soviet Phys. Solid State 3 706 [41] Dow J D and Redfield D 1970 Phys. Rev. B 1 3358 [42] Chaves A, Low T, Avouris P, Çakir D and Peeters F M 2015 Phys. Rev. B 91 155311 [43] Brunne D, Lafrentz M, Pavlov V V, Pisarev R V, Rodina A V, Yakovlev D R and Bayer M 2015 Phys. Rev. B 92 085202 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|