Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 053201    DOI: 10.1088/1674-1056/abd472
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Anisotropic exciton Stark shift in hemispherical quantum dots

Shu-Dong Wu(吴曙东)
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Abstract  The exciton Stark shift and polarization in hemispherical quantum dots (HQDs) each as a function of strength and orientation of applied electric field are theoretically investigated by an exact diagonalization method. A highly anisotropic Stark redshift of exciton energy is found. As the electric field is rotated from Voigt to Faraday geometry, the redshift of exciton energy monotonically decreases. This is because the asymmetric geometric shape of the hemispherical quantum dot restrains the displacement of the wave function to the higher orbital state in response to electric field along Faraday geometry. A redshift of hole energy is found all the time while a transition of electron energy from this redshift to a blueshift is found as the field is rotated from Voigt to Faraday geometry. Taking advantage of the diminishing of Stark effect along Faraday geometry, the hemispherical shapes can be used to improve significantly the radiative recombination efficiency of the polar optoelectronic devices if the strong internal polarized electric field is along Faraday geometry.
Keywords:  anisotropic Stark shift      exciton      hemispherical quantum dots      electric field  
Received:  07 November 2020      Revised:  11 December 2020      Accepted manuscript online:  17 December 2020
PACS:  32.60.+i (Zeeman and Stark effects)  
  71.35.-y (Excitons and related phenomena)  
  73.21.La (Quantum dots)  
  94.20.Ss (Electric fields; current system)  
Corresponding Authors:  Shu-Dong Wu     E-mail:  sdwu@yzu.edu.cn

Cite this article: 

Shu-Dong Wu(吴曙东) Anisotropic exciton Stark shift in hemispherical quantum dots 2021 Chin. Phys. B 30 053201

[1] Miyata N, Watanabe H and Ichikawa M 2000 Appl. Phys. Lett. 77 1620
[2] Rodríguez A H, Trallero-Giner C, Ulloa S E and Marín-Antuña J 2001 Phys. Rev. B 63 125319
[3] Akazawa H 2003 Appl. Phys. Lett. 82 1464
[4] Haase J, Shinohara S, Mundra P, Risse G, Lyssenko V G, Fröb H, Hentschel M, Eychmüller A and Leo K 2010 Appl. Phys. Lett. 97 211101
[5] Li K H, Feng C and Choi H W 2014 Appl. Phys. Lett. 104 051107
[6] Mano T, Watanabe K, Tsukamoto S and Koguchi N 2000 Appl. Phys. Lett. 76 3543
[7] Kolobov A V, Shklyaev A A, Oyanagi H, Fons P, Yamasaki S and Ichikawa M 2001 Appl. Phys. Lett. 78 2563
[8] Prado S J, Trallero-Giner C, Alcalde A M, López-Richard V and Marques G E 2004 Phys. Rev. B 69 201310
[9] Bondarenko V and Zhao Y 2006 Phys. Rev. B 73 035335
[10] Li S, Shi L and Yan Z W 2020 Chin. Phys. B 29 097802
[11] Tanriseven S, Maaskant P and Corbett B 2008 Appl. Phys. Lett. 92 123501
[12] Li J, Yu H, Li Y, Wang F, Yang M and Wong S M 2011 Appl. Phys. Lett. 98 021905
[13] Lysak V V, Kang J H and Hong C H 2013 Appl. Phys. Lett. 102 061114
[14] Park W Y, Kwon Y, Cheong H W, Lee C and Whang K W 2016 J. Appl. Phys. 119 095502
[15] Anderson M A, Gorer S and Penner R M 1997 J. Phys. Chem. B 101 5895
[16] Leonard D, Pond K and Petroff P M 1994 Phys. Rev. B 50 11687
[17] Zhang Y, Feng C, Wang T and Choi H W 2016 Appl. Phys. Lett. 108 031110
[18] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T. H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
[19] Fröhlich D, Wille R, Schlapp W and Weimann G 1987 Phys. Rev. Lett. 59 1748
[20] Yang X C and Xing Y 2020 Chin. Phys. B 29 087802
[21] Li X C, Ye C B, Gao J and Wang B 2020 Chin. Phys. B 29 087302
[22] Pedersen T G 2019 Phys. Rev. A 99 063410
[23] Tsai W C, Chen Y T, Lin C H, Hsu W T, Hsu Y S, Chen L C, Chen K H and Chang W H 2013 Phys. Rev. B 88 155323
[24] Shirasaki Y, Supran G J, Tisdale W A and Bulović V 2013 Phys. Rev. Lett. 110 217403
[25] Xu H and Lai Y C 2015 Phys. Rev. B 92 195120
[26] Pedersen T G 2016 Phys. Rev. B 94 125424
[27] Scharf B, Frank T, Gmitra M, Fabian J, Žutić I and Perebeinos V 2016 Phys. Rev. B 94 245434
[28] Zahra H, Elmaghroui D, Fezai I and Jaziri S 2016 J. Appl. Phys. 120 205702
[29] Shevlyagin A V, Goroshko D L, Chusovitin E A and Galkin N G 2016 Appl. Phys. Lett. 109 171101
[30] Pedersen T G 2019 Phys. Rev. B 100 155410
[31] Krüger S O, Stolz H and Scheel S 2020 Phys. Rev. B 101 235204
[32] Kamban H C, Pedersen T G and Peres N M R 2020 Phys. Rev. B 102 115305
[33] Henriques J C G, Kamban H C, Pedersen T G and Peres N M R 2020 Phys. Rev. B 102 035402
[34] Wang S Y, Kawakami Y, Simpson J, Stewart H, Prior K A and Cavenett B C 1993 Appl. Phys. Lett. 62 1715
[35] Thoma J, Liang B, Reyner C, Ochalski T, Williams D, Hegarty S P, Huffaker D and Huyet G 2013 Appl. Phys. Lett. 102 013120
[36] Zhu S, Lin S, Li J, Yu Z, Cao H, Yang C, Li J and Zhao L 2017 Appl. Phys. Lett. 111 171105
[37] Li C F, Shi K J, Xu M S, Xu X G and Ji Z W 2019 Chin. Phys. B 28 107803
[38] Chen P, Zhao D G, Jiang D S, Yang J, Zhu J J, Liu Z S, Liu W, Liang F, Liu S T, Xing Y and Zhang L Q 2020 Chin. Phys. B 29 034206
[39] Oukerroum A, Feddi E, Bailach J B, Martínez-Pastor J, Dujardin F and Assaid E 2010 J. Phys.: Condens. Matter 22 375301
[40] Gross E F, Zakharchenya B P and Kanskaya L M 1961 Soviet Phys. Solid State 3 706
[41] Dow J D and Redfield D 1970 Phys. Rev. B 1 3358
[42] Chaves A, Low T, Avouris P, Çakir D and Peeters F M 2015 Phys. Rev. B 91 155311
[43] Brunne D, Lafrentz M, Pavlov V V, Pisarev R V, Rodina A V, Yakovlev D R and Bayer M 2015 Phys. Rev. B 92 085202
[1] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[4] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[8] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[9] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[10] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[11] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[12] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[13] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[14] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[15] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
No Suggested Reading articles found!