Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 053101    DOI: 10.1088/1674-1056/26/5/053101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structural stability of ultra-high temperature refractory material MoSi2 and Mo5Si3 under high pressure

Hao Liang(梁浩)1, Fang Peng(彭放)1, Cong Fan(樊聪)1, Qiang Zhang(张强)1, Jing Liu(刘景)2, Shi-Xue Guan(管诗雪)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In-situ angle dispersive x-ray diffraction (ADXRD) with synchrotron radiation source is performed on an ultra-high temperature refractory of MoSi2 and Mo5Si3 by using a diamond anvil cell (DAC) at room temperature. While the pressure-induced volume reduction is almost constant, the value of the bulk modulus increases with the decrease of molybdenum content in the system. According to the Brich-Murnaghan equation, the bulk modulus 222.1 (2.1) GPa with its pressure derivative 4 of MoSi2, and the bulk modulus 308.4 (7.6) GPa with its pressure derivative 0.7 (0.1) of Mo5Si3 are obtained. The experimental data show that MoSi2 has distinct anisotropic behavior, Mo5Si3 is less anisotropic than MoSi2. The result shows that MoSi2 and Mo5Si3 have the structural stabilities under high pressure. When the pressure reaches up to 41.1 GPa, they can still maintain their body-cantered tetragonal structures.

Keywords:  high pressure x-ray diffraction      molybdenum silicide      synchrotron radiation      bulk modulus  
Received:  21 December 2016      Revised:  17 February 2017      Accepted manuscript online: 
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  61.05.cp (X-ray diffraction)  
  62.20.-x (Mechanical properties of solids)  
Fund: 

Project supported by the Joint Fund of the National Natural Science Foundation of China and the Chinese Academy of Sciences (Grant No. U1332104).

Corresponding Authors:  Fang Peng     E-mail:  pengfang@scu.edu.cn

Cite this article: 

Hao Liang(梁浩), Fang Peng(彭放), Cong Fan(樊聪), Qiang Zhang(张强), Jing Liu(刘景), Shi-Xue Guan(管诗雪) Structural stability of ultra-high temperature refractory material MoSi2 and Mo5Si3 under high pressure 2017 Chin. Phys. B 26 053101

[1] Darolia R, Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B and Nathal M V 1993 Minerals, Metals and Materials Society 94 495
[2] Liu W and Dupont J N 2003 Metall. Mater. Trans. A 34 2633
[3] Zhang F, Zhang L, Shan A and Wu J 2006 Intermetallics 14 406
[4] Liu Y Q, Shao G and Tsakiropoulos P 2001 Intermetallics 9 125
[5] Sharif A A 2010 J. Mater. Sci. 45 865
[6] Berztiss D A, Cerchiara R R, Gulbransen E A, Pettit F S and Meier G H 1992 Mater. Sci. Eng. A 155 165
[7] Meyer M K and Akinc M J 1996 Am. Ceram. Soc 79 938
[8] Meyer M K, Kramer M J and Akinca M 1996 Intermetallics 4 273
[9] Mantle A L and Aspinwall D K 2001 J. Mater. Process. Technol. 118 143
[10] Schneibel J H and Sekhar J A 2003 Mater. Sci. Eng. A 340 204
[11] Maloy S A, Mitchell T E and Heuer A H 1995 Acta Metall. Mater. 43 657
[12] Tateoki I, Toshihiro M, Hiroyuki Y and Hideki K 2002 J. Am. Ceram. Soc. 85 954
[13] Harada Y, Morinaga M, Saso D, Takata M and Sakata M 1998 Intermetallics 6 523
[14] Morihiko N, Syoujiro M and Toshiyuk H 1990 J. Mater. Sci. 25 3309
[15] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Cambridge: The MIT Press) p. 18
[16] Fua C L, Wanga X D, Ye Y Y and Ho K M 1999 Intermetallics 7 179
[17] Chu F, Thoma D J, McClellan K J and Peralta P 1999 Mater. Sci. Eng. A 261 44
[18] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[19] Liu J 2016 Chin. Phys. B 25 076106
[20] Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Le L, Li X D and He D W 2016 Chin. Phys. B 25 07610
[21] Birch F 1978 J. Geophys. Res. 83 1257
[22] Murnaghan F D 1944 Natl. Acad. Sci. 30 244
[23] Morihiko N, Syoujiro M and Toshiyuki H 1990 J. Mater. Sci. 25 3309
[24] Lothe J P and Hirth J P 1982 (New York: Wiley) p. 270
[25] Mattheiss L F and Hamann D R 1986 Phys. Rev. B 33 823
[26] Alouani M, Alber, R C A and Methfessel M 1991 Phys. Rev. B 43 6500
[27] Yin M T and Cohen M L 1982 Phys. Rev. B 26 5668
[28] McSkimin H J 1953 J. Appl. Phys. 24 988
[29] McSkimin H J and Andreatch Jr P 1963 J. Appl. Phys. 34 651
[30] Liu P P, Peng F, Yin S, Liu F M, Wang Q M, Zhu X H, Wang P, Liu J and He D W 2014 J. Appl Phys. 115 163502
[31] Chu F, Thoma D J, McClellan K J and Peralta P 1999 Mater. Sci. Eng. A 261 44
[1] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[2] Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2019, 28(6): 066402.
[3] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[4] Compression behavior and phase transition of β-Si3N4 under high pressure
Hong-xia Gong(龚红霞), Zi-li Kou(寇自力), Cong Fan(樊聪), Hao Liang(梁浩), Qi-ming Wang(王齐明), Lei-lei Zhang(张雷雷), Fang Peng(彭放), Ming Yang(杨鸣), Xiao-lin Ni(倪小林), Jing Liu(刘景). Chin. Phys. B, 2018, 27(5): 056101.
[5] Exploring the compression behavior of HP-BiNbO4 under high pressure
Yin-Juan Liu(刘银娟), Jia-Wei Zhang(张佳威), Duan-Wei He(贺端威), Chao Xu(许超), Qi-Wei Hu(胡启威), Lei Qi(戚磊), A-Kun Liang(梁阿坤). Chin. Phys. B, 2017, 26(11): 116202.
[6] Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression
Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2017, 26(10): 106402.
[7] Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air bysynchrotron radiation spectroscopy
Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西). Chin. Phys. B, 2016, 25(9): 097402.
[8] Unreacted equation of states of typical energetic materials under static compression: A review
Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军). Chin. Phys. B, 2016, 25(7): 076202.
[9] High pressure x-ray diffraction techniques with synchrotron radiation
Jing Liu(刘景). Chin. Phys. B, 2016, 25(7): 076106.
[10] Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface
Zhang Shuang-Hong (张双红), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Wu Rui (吴蕊), Zhang Nian (张念), Lei Tao (雷涛), Liu Chen (刘晨), Kurash Ibrahim (奎热西·伊布拉欣). Chin. Phys. B, 2015, 24(2): 027901.
[11] Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2
Li Xiao-Ping (李小平), Sun Shun-Ping (孙顺平), Yu Yun (于赟), Wang Hong-Jin (王洪金), Jiang Yong (江勇), Yi Dan-Qing (易丹青). Chin. Phys. B, 2015, 24(12): 120502.
[12] Improvement and error analysis of quantitative information extraction in diffraction-enhanced imaging
Yang Hao (杨浩), Xuan Rui-Jiao (轩瑞娇), Hu Chun-Hong (胡春红), Duan Jing-Hao (段敬豪). Chin. Phys. B, 2014, 23(4): 048701.
[13] Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy
Zhang Kai (张凯), Li Dee (李德娥), Hong You-Li (洪友丽), Zhu Pei-Ping (朱佩平), Yuan Qing-Xi (袁清习), Huang Wan-Xia (黄万霞), Gao Kun (高昆), Zhou Hong-Zhang (周红章), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2013, 22(7): 076801.
[14] Polycapillary X-ray lens for secondary focusing Beijing synchrotron radiation source
Li Yu-De (李玉德), Lin Xiao-Yan (林晓燕), Liu Shi-Gang (刘世岗), He Jin-Long (何金龙), Guo Fei (郭非), Sun Tian-Xi (孙天希), Liu Peng (刘鹏). Chin. Phys. B, 2013, 22(4): 044103.
[15] Pressure-induced phase transition in silicon nitride material
Chen Dong (陈东), Yu Ben-Hai (余本海). Chin. Phys. B, 2013, 22(2): 023104.
No Suggested Reading articles found!