Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056102    DOI: 10.1088/1674-1056/abda2f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction

Jinyang Liu(刘锦阳)1, Min Wu(武敏)1, Xinyi Yang(杨新一)1,†, Juan Ding(丁娟)2,‡, Weiwei Lei(类伟巍)3, and Yongming Sui(隋永明)1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 Zhuhai College, Jilin University, Zhuhai 519041, China;
3 Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
Abstract  Methanol fuel cells have been intensively developed as clean and high-efficiency energy conversion system due to their high efficiency and low emission of pollutants. Here, we developed a simple aqueous synthetic method to prepare bimetallic PdAu nanoflowers catalysts for methanol oxidation reaction (MOR) in alkaline environment. Their composition can be directly tuned by changing the ratio between Pd and Au precursors. Compared with commercial Pd/C catalyst, all of the PdAu nanoflowers catalysts show the enhanced catalytic activity and durability. In particular, the PdAu nanoflowers specific activity reached 0.72 mA/cm2, which is 14 times that of commercial Pd/C catalyst. The superior MOR activity could be attributed to the unique porous structure and the shift of the d-band center of Pd.
Keywords:  PdAu alloy      methanol oxidation reaction      catalyst  
Received:  11 December 2020      Revised:  30 December 2020      Accepted manuscript online:  11 January 2021
PACS:  61.82.Bg (Metals and alloys)  
  88.30.pf (Direct methanol fuel cells)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 118740271 and 1774124), Technology Development Program of Jilin Province, China (Grant No. 20180101285JC), and the China Postdoctoral Science Foundation (Grant Nos. 2019T120233 and 2017M621198).
Corresponding Authors:  Xinyi Yang, Juan Ding     E-mail:  yangxinyi@jlu.edu.cn;juanding0127@163.com

Cite this article: 

Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明) A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction 2021 Chin. Phys. B 30 056102

[1] Aricó A S, Srinivasan S and Antonucci V 2001 Fuel Cells 1 133
[2] Iwasita T 2002 Electrochim. Acta 47 3663
[3] Bai J, Xiao X, Xue Y Y, Jiang J X, Zeng J H, Li X F and Chen Y 2018 ACS Appl. Mater. Interfaces 10 19755
[4] Antolini E 2009 Energy Environ. Sci. 2 915
[5] Kelly C H W, Benedetti T M, Alinezhad A, Schuhmann W, Gooding J J and Tilley R D 2018 J. Phys. Chem. C 122 21718
[6] Chen H, Xing Z, Zhu S, Zhang L, Chang Q, Huang J, Cai W B, Kang N, Zhong C J and Shao M 2016 J. Power Sources 321 264
[7] García-Domínguez P and Nevado C 2016 J. Am. Chem. Soc. 138 3266
[8] Wang Q L, Fang R, He L L, Feng J J, Yuan J and Wang A J 2016 J. Alloys Compd. 684 379
[9] Kim Y, Noh Y, Lim E J, Lee S, Choi S M and Kim W B 2014 J. Mater. Chem. A 2 6976
[10] Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Shiraishi Y, Du Y and Yang P 2017 J. Colloid Interface Sci. 505 1
[11] Li G, Shi B, Gong Y, Zhang Y, Wang X, Guo M and Lyu X 2020 Mater. Chem. Phys. 243 122570
[12] Wang X and Xia Y 2008 Electrochem. Commun. 10 1644
[13] Mandal K, Bhattacharjee D, Roy P S, Bhattacharya S K and Dasgupta S 2015 Appl. Catal. A Gen. 492 100
[14] Hammer B and Norskov J K 2000 Adv. Catal. 45 71
[15] Zhang L, Guo Y, Iqbal A, Li B, Deng M, Gong D, Liu W and Qin W 2017 J. Nanoparticle Res. 19 150
[16] Zhu W, Kattel S, Jiao F and Chen J G 2019 Adv. Energy Mater. 9 1
[17] Zhang M, Wu Y and Yu Y 2020 Appl. Surf. Sci. 510 145434
[18] Wang X, Vara M, Luo M, Huang H, Ruditskiy A, Park J, Bao S, Liu J, Howe J, Chi M, Xie Z and Xia Y 2015 J. Am. Chem. Soc. 137 15036
[19] Wang H, Wu M, Wang Y, Wang H, Huang X and Yang X 2019 Chin. Phys. B 28 106401
[20] Xia X, Yates J L R, Jones G, Sarwar M, Harkness I and Thompsett D 2016 J. Mater. Chem. A 4 15181
[21] Han Z, Wang A J, Zhang L, Wang Z G, Fang K M, Yin Z Z and Feng J J 2019 J. Colloid Interface Sci. 554 512
[22] Feng Y G, Niu H J, Mei L P, Feng J J, Fang K M and Wang A J 2020 J. Colloid Interface Sci. 575 425
[23] Cargnello M, Agarwal R, Klein D R, Diroll B T, Agarwal R and Murray C B 2015 Chem. Mater. 27 5833
[24] Chen Z, Ren W, Gao L, Liu B, Pei S and Cheng H M 2011 Nat. Mater. 10 424
[25] Lee B C, Kim M H, Chandran J, Kim S K, Shin H J and Moon S 2008 J. Exp. Nanosci. 3 87
[26] Mahmoud M A, Tabor C E, El-Sayed M A, Ding Y and Zhong L W 2008 J. Am. Chem. Soc. 130 4590
[27] Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X, Zhu Y and Xia Y 2009 Science 324 1302
[28] Luo L M, Zhang R H, Du J J, Yang F, Liu H M, Yang Y and Zhou X W 2017 Int. J. Hydrogen Energy 42 16139
[29] Wang Y, Sheng Z M, Yang H, Jiang S P and Li C M 2010 Int. J. Hydrogen Energy 35 10087
[30] Liu J, Wang J, Kong F, Huang T and Yu A 2016 Catal. Commun. 73 22
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[3] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[4] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[5] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[6] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[7] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[8] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[9] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[10] Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study
Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪). Chin. Phys. B, 2019, 28(11): 113101.
[11] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
[12] High-resolution electron microscopy for heterogeneous catalysis research
Yong Zhu(朱勇), Mingquan Xu(许名权), Wu Zhou(周武). Chin. Phys. B, 2018, 27(5): 056804.
[13] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[14] Modulating the properties of monolayer C2N: A promising metal-free photocatalyst for water splitting
Song Yu(俞松), Yong-Chao Rao(饶勇超), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2017, 26(8): 087301.
[15] Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter
Shang-Sheng Li(李尚升), He Zhang(张贺), Tai-Chao Su(宿太超), Qiang Hu(胡强), Mei-Hua Hu(胡美华), Chun-Sheng Gong(龚春生), Hon-An Ma(马红安), Xiao-Peng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(6): 068102.
No Suggested Reading articles found!