ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system |
Rui-Jie Xiao(肖瑞杰)1,†, Gui-Xia Pan(潘桂侠)2, and Xiao-Ming Xiu(修晓明)1 |
1 College of Physical Science and Technology, Bohai University, Jinzhou 121013, China; 2 School of Science, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract We theoretically investigate a two-cavity optomechanical system in which each optical cavity couples to a mechanical resonator via radiation pressure force, and the two optical cavities couple to each other via a distant waveguide. Our study shows that the multiple optomechanically induced transparency can be observed from the output field at the probe frequency. The number and width of the transparent windows can be tuned by the classical driving power Pl. We also analyze the distance of the two outermost transparency windows, which shows a linear relation with the parameters Pl and Λ. Our approach is feasible for controlling multipartite induced transparency, which represents a valuable step towards quantum networks with photonic and phononic circuits.
|
Received: 07 June 2020
Revised: 20 September 2020
Accepted manuscript online: 05 November 2020
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.15.Eq
|
(Optical system design)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704042 and 11674037) and the LiaoNing Revitalization Talents Program (Grant No. XLYC1807206). |
Corresponding Authors:
†Corresponding author. E-mail: xrjxrj2003@163.com
|
Cite this article:
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明) Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system 2021 Chin. Phys. B 30 034209
|
1 Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 2 Marquardt F and Girvin S M 2009 Physics 2 40 3 Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X and Zhang J 2019 Phys. Rev. A 99 063810 4 Zhang F Y, Li W L, Yan W B and Xia Y 2019 J. Phys. B: At. Mol. Opt. Phys. 52 115501 5 Cheng J, Zhang W Z, Han Y and Zhou L 2016 Sci. Rep. 6 23678 6 Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022 7 He Y 2015 Phys. Rev. A 91 013827 8 Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 17979 9 Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204 10 Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J and Sillanpaa M A 2011 Nature 480 351 11 Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D and Painter O 2011 Nature 472 69 12 Akram M J, Khan M M and Saif F 2015 Phys. Rev. A 92 023846 13 Sarma B and Sarma A K 2016 J. Opt. Soc. Am. B 33 1335 14 Reinhardt C, M\"uller T, Bourassa A and Sankey J C 2016 Phys. Rev. X 6 021001 15 Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A 99 063811 16 Jing H, Ozdemir S K, L\"u X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604 17 Sarma B and Sarma A K 2018 Phys. Rev. A 98 013826 18 Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 19 Abramovici A, Althouse W E, Drever R W P, G\"ursel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, Vogt R E, Weiss R, Whitcomb S E and Zucker M E 1992 Science 256 325 20 Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 21 Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815 22 Weis S, Rivi\`ere R, Del\'eglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 23 Chang D, Safavi-Naeini A H, Hafezi M and Painter O 2011 New J. Phys. 13 023003 24 Lu T X, Jiao Y F, Zhang H L, Saif F and Jing H 2019 Phys. Rev. A 100 013813 25 Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806 26 Agarwal G S and Huang S M 2012 Phys. Rev. A 85 021801 27 Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825 28 Shahidani S, Naderi M H and Soltanolkotabi M 2013 Phys. Rev. A 88 053813 29 Wu S C, Qin L G, Jing J, Yan T M, Lu J and Wang Z Y 2018 Phys. Rev. A 98 013807 30 Jing S 2011 Chin. Phys. Lett. 28 104203 31 Gu W J and Yi Z 2014 Opt. Commun. 333 261 32 Huang S M and Tsang M arXiv: 1403.1340v1 33 Xiao R J, Pan G X and Zhou L 2015 J. Opt. Soc. Am. B 32 1399 34 Hao H, Kuzyk M C, Ren J J, Zhang F, Duan X K, Zhou L, Zhang T C, Gong Q H, Wang H L and Gu Y 2019 Phys. Rev. A 100 023820 35 Wu S C, QIN L G, Jing J, Yang G H and Wang Z Y 2016 Chin. Phys. B 25 054203 36 Hessa M, Alotaibi M and Sanders B C 2014 Phys. Rev. A 89 021802 37 Wu S C, QIN L G, Lu J and Wang Z Y 2019 Chin. Phys. B 28 074204 38 Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2018 Phys. Rev. A 98 033832 39 Xu X W, Liu Y, Sun C P and Li Y 2015 Phys. Rev. A 92 013852 40 Karabalin R B, Cross M C and Roukes M L 2009 Phys. Rev. B 79 165309 41 Huang P, Wang P F, Zhou J W, Wang Z X, Ju C Y, Wang Z M, Shen Y, Duan C K and Du J F 2013 Phys. Rev. Lett. 110 227202 42 Barzanjeh S and Vitali D 2016 Phys. Rev. A 93 033846 43 Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56 44 Sohail A, Zhang Y, Zhang J and Yu C S 2016 Sc. Rep. 6 28830 45 Ma J L, Tan L, Li Q, Gu H Q and Liu W M 2018 Sci. Rep. 8 14367 46 Li T, Bao T Y, Zhang Y L, Zou C L, Zou X B and Guo G C 2016 Opt. Express 24 12336 47 Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 48 Tan H, Buchmann L F, Seok H and Li G 2013 Phys. Rev. A 87 022318 49 Walls D F and Milburn G J1994 Quantum Optics(Berlin: Springer-Verlag) 50 Agarwal G S and Huang S M 2010 Phys. Rev. A 81 041803 51 Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|