ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Role of quantum paths in generation of attosecond pulses |
M R Sami and A Shahbaz† |
1 Department of Physics, Government College University, P.O. Box 54000 Lahore, Pakistan |
|
|
Abstract We investigate the role of core potential in high ionization potential systems on high harmonic generation (HHG) spectra and obtain attosecond pulses. In our scheme, we use a standard soft core potential to model high ionization potential systems and irradiated these systems with fixed laser parameters. We observe the role of these systems on all the three steps involved in HHG process including ionization, propagation and recombination. In our study, the results illustrate that for high ionization potential systems, the HHG process is more sensitive to the ionization probability compared to the recombination amplitude. We also observe that due to the stronger core potential, small oscillations of the electrons during the propagation do not contribute to the HHG spectrum, which implies the dominance of only long quantum paths in the HHG spectrum. Our results, for attosecond pulse generation, show that long quantum path electrons are responsible for the supercontinuum region near the cutoff, which is suitable for the extraction of a single attosecond pulse in this region.
|
Received: 13 March 2020
Revised: 03 May 2020
Accepted manuscript online: 18 June 2020
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
Corresponding Authors:
†Corresponding author. E-mail: atif-shahbaz@gcu.edu.pk
|
Cite this article:
M R Sami and A Shahbaz† Role of quantum paths in generation of attosecond pulses 2020 Chin. Phys. B 29 104207
|
[1] |
|
[2] |
|
[3] |
|
[4] |
Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Stephen R L, Krausz F 2010 Nature 466 739 DOI: 10.1038/nature09212
|
[5] |
Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803 DOI: 10.1038/nature01143
|
[6] |
|
[7] |
Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627 DOI: 10.1038/nature05648
|
[8] |
Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 142001 DOI: 10.1088/0953-4075/49/14/142001
|
[9] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F, Schultze M 2001 Nature 414 509 DOI: 10.1038/35107000
|
[10] |
|
[11] |
Fabris D, Witting T, Okell W A, Walke D J, Matia-Hernando P, Henkel J, Barillot T R, Lein M, Marangos J P, Tisch J W G 2015 Nat. Photon. 9 383 DOI: 10.1038/nphoton.2015.77
|
[12] |
McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 DOI: 10.1364/JOSAB.4.000595
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
Balogh E, Kovacs K, Dombi P, Fulop J A, Farkas G, Hebling J, Tosa V, Varju K 2011 Phys. Rev. A 84 023806 DOI: 10.1103/PhysRevA.84.023806
|
[18] |
Hansen K k, Bauer D, Madsen L B 2018 Phys. Rev. A 67 043424
|
[19] |
|
[20] |
|
[21] |
Pfeifer T, Gallmann L, Abel M J, Neumark D M, Leone S R 2006 Opt. Lett. 31 975 DOI: 10.1364/OL.31.000975
|
[22] |
Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901 DOI: 10.1103/PhysRevLett.103.183901
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
Häffner H, Beier T, Djekić S, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Valenzuela T, Werth G 2003 Eur. Phys. J. D 22 163 DOI: 10.1140/epjd/e2003-00012-2
|
[28] |
Werth G, Alonso J, Beier T, Blaum K, Djekić S, Häffner H, Hermanspahn N, Quint W, Stahl S, Verdú J, Valenzuela T, Vogel M 2006 Int. J. Mass Spectrometry 251 152 DOI: 10.1016/j.ijms.2006.01.046
|
[29] |
Kluge H J et al. 2008 Adv. Quantum Chem. 53 83
|
[30] |
Kraft-Bermuth S, Andrianov V, Bleile A, Echler A, Egelhof P, Grabitz P, Kilbourne C, Kiselev O, McCammon D, Scholz P 2014 J. Low Temp. Phys. 176 1002 DOI: 10.1007/s10909-013-1002-7
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
Zair A, Holler M, Guandalini A, Schapper F, Biegert J, Gallmann L, Keller U, Wyatt A, Monmayrant A, Walmsley I A, Cormier Auguste T, Caumes J P, Salieres P 2008 Phys. Rev. Lett. 100 143902 DOI: 10.1103/PhysRevLett.100.143902
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|