Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 115202    DOI: 10.1088/1674-1056/ab9c14
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry

Hong-Yu Guo(郭宏宇)1,2, †, Tao Cheng(程涛)1,2, and Ying-Jun Li(李英骏)1,2,, ‡
1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
2 School of Science, China University of Mining and Technology, Beijing 100083, China
Abstract  

Bell–Plesset (BP) effect caused perturbation growth plays an important role in better understanding of characteristics of the convergence effect. Governing equations for multi-mode perturbation growth on a cylindrically convergent interface are derived. The second-order weakly nonlinear (WN) solutions for two-mode perturbations at the interface which is subject to uniformly radical motion are obtained. Our WN theory is consistent with the numerical result in terms of mode-coupling effect in converging Richtmyer–Meshkov instability. Nonlinear mode-coupling effects will cause irregular deformation of the convergent interface. The mode-coupling behavior in convergent geometry depends on the mode number, Atwood number A and convergence ratio Cr. The A = –1.0 at the interface results in larger perturbation growth than A = 1.0. The growth of generated perturbation modes from two similar modes at the initial stage are smaller than that from two dissimilar modes.

Keywords:  Bell-Plesset effect      Rayleigh-Taylor instability      inertial confinement fusion  
Received:  26 April 2020      Revised:  07 June 2020      Accepted manuscript online:  12 June 2020
Fund: the Fundamental Research Funds for the Central Universities, China (Grant No. 2019QS04), the National Natural Science Foundation of China (Grant No. 11574390), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA 25051000).
Corresponding Authors:  Corresponding author. E-mail: ghy@cumtb.edu.cn Corresponding author. E-mail: lyj@aphy.iphy.ac.cn   

Cite this article: 

Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏) Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry 2020 Chin. Phys. B 29 115202

Fig. 1.  

Evolution of interfacial profiles for two-mode perturbations at Cr = 1 (solid), 1.5 (dashed), 3 (dot-dashed) and 5 (dashed) with A = 1.0. The mode numbers are m1 = 4 (a), 5 (b), 6 (c) and 7 (d), m2 = 4. The initial velocity perturbations are ${\dot{\alpha }}_{{m}_{1}}={\dot{\alpha }}_{{m}_{2}}=0.01{V}_{0}$.

Fig. 2.  

Normalized perturbation amplitudes for the initial two-mode perturbation at convergent ratio Cr = 3.5. The equivalent wavenumber is k = m/R, the other parameters are A = 1.0, m1 = 20, m2 = 8 and ${\dot{\alpha }}_{{m}_{1}}={\dot{\alpha }}_{{m}_{2}}=0.01{V}_{0}$.

Fig. 3.  

Temporal evolution of mode m = 60 from initial two-mode perturbation (m1 = 40, m2 = 20). The solid and dashed lines are WN solutions to Eq. (16), the markers are the corresponding simulation results in Ref. [26] for αm1 = ± 0.2 mm and αm2 = 1.5 mm.

Fig. 4.  

Perturbation amplitude of mode m = 20 versus time for initial two-mode perturbation (m1 = 40, m2 = 20) with αm1 = –0.2 mm and αm2 = 1.5 mm. The solid line denotes our WN result, the dotted line is the numerical result taken from Ref. [26].

Fig. 5.  

The normalized amplitudes η+/λ1 (solid) and η/λ1 (dashed) versus convergence ratio Cr for two nearby modes (m1 = 24, m1 = 20) (a) and dissimilar modes (m1 = 50, m1 = 20) (b) perturbations at the initial stage. The initial perturbations are ${\dot{\alpha }}_{{m}_{1}}={\dot{\alpha }}_{{m}_{2}}=0.01{V}_{0}$ and the Atwood number A = 1.0.

Fig. 6.  

The normalized amplitudes η+/λ1 (a) and η/λ1 (b) for the Atwood numbers A = 1.0, 0.5, –0.5 and –1.0 with the initial perturbation ${\dot{\alpha }}_{{m}_{1}}={\dot{\alpha }}_{{m}_{2}}=0.01{V}_{0}$. The perturbation mode numbers are m1 = 40 and m2 = 20.

[1]
Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339 DOI: 10.1063/1.1578638
[2]
Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K, Zhang W Y 2017 Sci. China Phys. Mech. Astron. 60 055201 DOI: 10.1007/s11433-017-9016-x
[3]
Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755 DOI: 10.1103/RevModPhys.78.755
[4]
Craxton R S et al. 2015 Phys. Plasmas 22 110501 DOI: 10.1063/1.4934714
[5]
Marocchino A, Atzeni S, Schiavi A 2010 Phys. Plasmas 17 112703 DOI: 10.1063/1.3505112
[6]
Rayleigh L 1882 Proc. London Math. Soc. s1–14 170 DOI: 10.1112/plms/s1-14.1.170
[7]
Taylor G 1950 Proc. R. Soc. Lond. A 201 192 DOI: 10.1098/rspa.1950.0052
[8]
Bell G I 1951 Los Alamos Scientific Laboratory Report No. LA-1321
[9]
Plesset M S 1954 J. Appl. Phys. 25 96 DOI: 10.1063/1.1721529
[10]
Hsing W W, Barnes C W, Beck J B, Hoffman N M, Galmiche D, Richard A, Edwards J, Graham P, Rothman S, Thomas B 1997 Phys. Plasmas 4 1832 DOI: 10.1063/1.872326
[11]
Hsing W W, Hoffman N M 1997 Phys. Rev. Lett. 78 3876 DOI: 10.1103/PhysRevLett.78.3876
[12]
Amendt P, Colvin J D, Ramshaw J D, Robey H F, Landen O L 2003 Phys. Plasmas 10 820 DOI: 10.1063/1.1543926
[13]
Wang X G, Sun S K, Xiao D L et al. 2019 Chin. Phys. B 28 035201 DOI: 10.1088/1674-1056/28/3/035201
[14]
Zhai Z G et al. 2018 Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 2830 DOI: 10.1177/0954406217727305
[15]
Ding J C et al. 2017 Phys. Rev. Lett. 119 014501 DOI: 10.1103/PhysRevLett.119.014501
[16]
Epstein R 2004 Phys. Plasmas 11 5114 DOI: 10.1063/1.1790496
[17]
Velikovich A L, Schmit P F 2015 Phys. Plasmas 22 122711 DOI: 10.1063/1.4938272
[18]
Guo H Y et al. 2017 Phys. Plasmas 24 112708 DOI: 10.1063/1.5001533
[19]
Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2018 Chin. Phys. B 27 055205 DOI: 10.1088/1674-1056/27/5/055205
[20]
Zhang J, Wang L F, Ye W H, Wu J F, Guo H Y, Zhang W Y, He X T 2017 Phys. Plasmas 24 062703 DOI: 10.1063/1.4984782
[21]
Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708 DOI: 10.1063/1.4803067
[22]
Wang L F, Wu J F, Guo H Y, Ye W H, Liu J, Zhang W Y, He X T 2015 Phys. Plasmas 22 082702 DOI: 10.1063/1.4928088
[23]
Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2018 Chin. Phys. Lett. 35 055201 DOI: 10.1088/0256-307X/35/5/055201
[24]
Haan S W 1991 Phys. Fluids B 3 2349 DOI: 10.1063/1.859603
[25]
Xin J, Yan R, Wan Z H, Sun J, Zheng J, Zhang H, Aluie H R., Betti R 2019 Phys. Plasmas 26 032703 DOI: 10.1063/1.5070103
[26]
Zhou Z B, Ding J C, Zhai Z G, Wan C, Luo X S 2019 Acta Mech. Sin. DOI: 10.1007/s10409-019-00917-3
[27]
Weber C R, Clark D S, Cook A W et al. 2015 Phys. Plasmas 22 032702 DOI: 10.1063/1.4914157
[28]
Clark D S, Marinak M M, Weber C R et al. 2015 Phys. Plasmas 22 022703 DOI: 10.1063/1.4906897
[29]
Mikaelian K O 2005 Phys. Fluids 17 094105 DOI: 10.1063/1.2046712
[30]
Sauppe J P, Haines B M, Palaniyappan S, Bradley P A, Batha S H, Loomis E N, Kline J L 2019 Phys. Plasmas 26 042701 DOI: 10.1063/1.5083851
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[3] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[4] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[5] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[6] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[7] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[8] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[9] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[10] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[11] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[12] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[13] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[14] Cylindrical effects in weakly nonlinear Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Ma Wen-Fang (马文芳), Wang Xu-Lin (王绪林). Chin. Phys. B, 2015, 24(1): 015202.
[15] Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Yu Chang-Ping (于长平), Ye Wen-Hua (叶文华), Wang Li-Feng (王立峰). Chin. Phys. B, 2014, 23(9): 094502.
No Suggested Reading articles found!