Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094502    DOI: 10.1088/1674-1056/23/9/094502
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability

Liu Wan-Hai (刘万海)a b, Yu Chang-Ping (于长平)c, Ye Wen-Hua (叶文华)b d e, Wang Li-Feng (王立峰)b d
a Research Center of Computational Physics, Mianyang Normal University, Mianyang 621000, China;
b Key Laboratory of High Energy Density Physics Simulation (HEDPS), and Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
c Key Laboratory of High Temperature Gas Dynamics (LHD), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
d Institute of Applied Physics and Computational Mathematics, Beijing 100194, China;
e Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh-Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.
Keywords:  nonlinear saturation amplitude      Rayleigh-Taylor instability      cylindrical interface  
Received:  30 December 2013      Revised:  27 February 2014      Accepted manuscript online: 
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.65.Vv (Perturbative methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10835003 and 11274026) and the Scientific Research Foundation of Mianyang Normal University, China (Grant No. 07165411).
Corresponding Authors:  Yu Chang-Ping     E-mail:  champion-yu@163.com

Cite this article: 

Liu Wan-Hai (刘万海), Yu Chang-Ping (于长平), Ye Wen-Hua (叶文华), Wang Li-Feng (王立峰) Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability 2014 Chin. Phys. B 23 094502

[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170
[2] Taylor G 1950 Proc. R. Soc. London Ser. A 201 192
[3] Zhang Q 1998 Phys. Rev. Lett. 81 3391
[4] Mikaelian K O 2003 Phys. Rev. E 67 026319
[5] Goncharov V N 2002 Phys. Rev. Lett. 88 134502
[6] Ramaprabhu P, Dimonte G, Young Y N, Calder A C and Fryxell B 2006 Phys. Rev. E 74 066308
[7] Layzer D 1955 Astrophys. J. 122 1
[8] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[9] Haan S W 1991 Phys. Fluids B 3 2349
[10] Berning M and Rubenchik A M 1998 Phys. Fluids 10 1564
[11] Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
[12] Zhang W Y, Ye W H, He X T and Wu J F 2003 Acta Phys. Sin. 52 1688 (in Chinese)
[13] Ye W H and He X T 2010 Chin. Phys. Lett. 27 125203
[14] Wang L F, Li Y J and Ye W H 2010 Chin. Phys. Lett. 27 025203
[15] Tao Y S, Wang L F, Ye W H, Zhang G, Zhang J C and Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese)
[16] Hasegawa S and Nishihara K 1995 Phys. Plasmas 2 4606
[17] Sanz J, Ramírez J, Ramis R, Betti R and TownR P J 2002 Phys. Rev. Lett. 89 195002
[18] Ikegawa T and Nishihara K 2002 Phys. Rev. Lett. 89 115001
[19] Garnier J and Masse L 2005 Phys. Plasmas 12 062707
[20] Sohn S I 2003 Phys. Rev. E 67 026301
[21] Goncharov V N and Li D 2005 Phys. Rev. E 71 046306
[22] Lafay M A, Le C B and Gauthier S 2007 Europhys. Lett. 79 64002
[23] Remington B A, Weber S V, Marinak M M, Haan S W, Kilkenny J D, Wallace R J and Dimonte G 1995 Phys. Plasmas 2 241
[24] Smalyuk V A, Goncharov V N, Boehly T R, Knauer J P, Meyerhofer D D and Sangster T C 2004 Phys. Plasmas 11 5083
[25] Jing L F, Huang T X, Jiang S E, Chen B L, Pu Y D, Hu F and Cheng S B 2012 Acta Phys. Sin. 61 105205 (in Chinese)
[26] Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E and Ding Y K 2012 Acta Phys. Sin. 61 075213 (in Chinese)
[27] Dunning M J and Haan S W 1995 Phys. Plasmas 2 1669
[28] Wang L F, Ye W H, Fan Z F and Li Y J 2010 Europhys. Lett. 90 15001
[29] Wang L F, Ye W H and Li Y J 2010 Phys. Plasmas 17 052305
[30] Mügler C and Gauthier S 1998 Phys. Rev. E 58 4548
[31] Rikanati A, Alon U and Shvarts D 1998 Phys. Rev. E 58 7410
[32] Wang L F, Ye W H, Fan Z F, Li Y J, He X T and Yu M Y 2009 Europhys. Lett. 86 15002
[33] Zhang Q and Graham M J 1998 Phys. Fluids 10 974
[34] Sweeney M A and Perry F C 1981 J. Appl. Phys. 52 4487
[35] Weir S T, Chandler E A and Goodwin B T 1998 Phys. Rev. Lett. 80 3763
[36] Fan Z F, Zhu S P, Pei W B, Ye W H, Li M, Xu X W, Wu J F, Dai Z Z and Wang L F 2012 Europhys. Lett. 99 65003
[37] Gamezo V N, Khokhlov A M, Oran E S, Chtchelkanova A Y and Rosenberg R O 2003 Science 299 77
[38] Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755
[39] Ebisuzaki T, Shigeyama T and Nomoto K 1989 Astrophys. J. 344 L65
[40] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
[41] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227
[1] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[2] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[3] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[4] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[5] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[6] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[7] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[8] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[9] Cylindrical effects in weakly nonlinear Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Ma Wen-Fang (马文芳), Wang Xu-Lin (王绪林). Chin. Phys. B, 2015, 24(1): 015202.
No Suggested Reading articles found!