Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 015202    DOI: 10.1088/1674-1056/24/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Cylindrical effects in weakly nonlinear Rayleigh–Taylor instability

Liu Wan-Hai (刘万海)a b, Ma Wen-Fang (马文芳)a, Wang Xu-Lin (王绪林)a
a Research Center of Computational Physics, Mianyang Normal University, Mianyang 621000, China;
b HEDPS and CAPT, Peking University, Beijing 100871, China
Abstract  The classical Rayleigh-Taylor instability (RTI) at the interface between two variable density fluids in the cylindrical geometry is explicitly investigated by the formal perturbation method up to the second order. Two styles of RTI, convergent (i.e., gravity pointing inward) and divergent (i.e., gravity pointing outwards) configurations, compared with RTI in Cartesian geometry, are taken into account. Our explicit results show that the interface function in the cylindrical geometry consists of two parts: oscillatory part similar to the result of the Cartesian geometry, and non-oscillatory one contributing nothing to the result of the Cartesian geometry. The velocity resulting only from the non-oscillatory term is followed with interest in this paper. It is found that both the convergent and the divergent configurations have the same zeroth-order velocity, whose magnitude increases with the Atwood number, while decreases with the initial radius of the interface or mode number. The occurrence of non-oscillation terms is an essential character of the RTI in the cylindrical geometry different from Cartesian one.
Keywords:  cylindrical effect      Rayleigh-Taylor instability      variable density fluid  
Received:  01 April 2014      Revised:  13 May 2014      Accepted manuscript online: 
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.65.Vv (Perturbative methods)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 10835003), the National Natural Science Foundation of China (Grant No. 11274026), the Scientific Research Foundation of Mianyang Normal University, China (Grant Nos. QD2014A009 and 2014A02), and the National High-Tech ICF Committee.
Corresponding Authors:  Wang Xu-Lin     E-mail:  wxln177@163.com

Cite this article: 

Liu Wan-Hai (刘万海), Ma Wen-Fang (马文芳), Wang Xu-Lin (王绪林) Cylindrical effects in weakly nonlinear Rayleigh–Taylor instability 2015 Chin. Phys. B 24 015202

[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170
[2] Taylor G 1950 Proc. R. Soc. Lond. A 201 192
[3] Ataeni S and Guerrieri A 1993 Europhys. Lett. 22 603
[4] Lafay M A, Creurer B L and Gauthier S 2007 Europhys. Lett. 79 64002
[5] Abarzhi S I 2010 Europhys. Lett. 91 35001
[6] Layzer D 1955 Astrophys. J. 122 1
[7] Zhang Q 1998 Phys. Rev. Lett. 81 3391
[8] Goncharov V N 2002 Phys. Rev. Lett. 88 134502
[9] Mikaelian K O 2003 Phys. Rev. E 67 026319
[10] Sohn S I 2003 Phys. Rev. E 67 026301
[11] Wang L F, Ye W H, Fan Z F and Li Y J 2010 Europhys. Lett. 90 15001
[12] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[13] Haan S W 1991 Phys. Fluids B 3 2349
[14] Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
[15] Liu W H, Wang L F, Ye W H and He X T 2013 Phys. Plasmas 20 062101
[16] Li Y J, Ye W H and Wang L F 2010 Chin. Phys. Lett. 27 025203
[17] Huo X H, Wang L F, Tao Y S, et al. 2013 Acta Phys. Sin. 62 144705 (in Chinese)
[18] Xia T J, Cao Y G and Dong Y Q 2013 Acta Phys. Sin. 62 214702 (in Chinese)
[19] Ye W H, Li Y J and Wang L F 2010 Chin. Phys. Lett. 27 025202
[20] Remington B A, Arnett D, Drake R P and Takabe H 1999 Science 284 1488
[21] Kifonidis K, Plewa T, Scheck L, Janka H T and Müller E 2006 Astron. Astrophys. 453 661
[22] Remington B A, Arnett D, Drake R P and Takabe H 2006 Rev. Mod. Phys. 78 755
[23] Drake R P 2006 High-Energy-Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics (New York: Springer)
[24] Bodner S 1974 Phys. Rev. Lett. 33 761
[25] Sanz J, Ramírez J, Ramis R, Betti R and Town R P J 2002 Phys. Rev. Lett. 89 195002
[26] Garnier J, Raviart P A, Cherfils-Clérouin C and Masse L 2003 Phys. Rev. Lett. 90 185003
[27] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
[28] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227
[29] Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J and He X T 2010 Phys. Plasmas 17 122706
[30] Ye W H, Wang L F and He X T 2010 Phys. Plasmas 17 122704
[31] Yu H and Livescu D 2008 Phys. Fluids 20 104103
[32] Zhang Q and Graham M J 1998 Phys. Fluids 10 974
[33] Sweeney M A and Perry F C 1981 J. Appl. Phys. 52 4487
[34] Weir S T, Chandler E A and Goodwin B T 1998 Phys. Rev. Lett. 80 3763
[1] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[2] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[3] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[4] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[5] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[6] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[7] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[8] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[9] Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Yu Chang-Ping (于长平), Ye Wen-Hua (叶文华), Wang Li-Feng (王立峰). Chin. Phys. B, 2014, 23(9): 094502.
No Suggested Reading articles found!