Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108701    DOI: 10.1088/1674-1056/abaee9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new viewpoint and model of neural signal generation and transmission: Signal transmission on myelinated neuron

Zuoxian Xiang(向左鲜)1,2, Chuanxiang Tang(唐传祥)1, Lixin Yan(颜立新)1, Chao Chang(常超)2,†, and Guozhi Liu(刘国治)1,
1 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2 Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
Abstract  

Based on our previous work, we study the problem of neural signal transmission of myelinated neurons. We found that the transmembrane ion current at Ranvier’s node acts as an energy supplement. In addition, the length of the myelin sheath has an upper limit of lT. Above this upper limit, the neural signal will not be effectively transmitted. In the range of normal physiological parameters, lT is on the order of mm. Finally, the effect of temperature on the transmission of nerve signals is investigated. temperatures that are too high and too low are not conducive to the conduction of nerve signals.

Keywords:  THz      myelinated neuron      signal transmission  
Received:  09 January 2020      Revised:  28 July 2020      Accepted manuscript online:  13 August 2020
PACS:  87.10.Vg (Biological information)  
  87.10.Ca (Analytical theories)  
  87.85.Ng (Biological signal processing)  
Corresponding Authors:  Corresponding author. E-mail: changc@xjtu.edu.cn Corresponding author. E-mail: liuguozhi60@163.com   
About author: 
†Corresponding author. E-mail: changc@xjtu.edu.cn
‡Corresponding author. E-mail: liuguozhi60@163.com
* Project supported in part by the National Defense Technology Innovation Special Zone and the National Natural Science Foundation of China (Grant Nos. 51677145 and 11622542).

Cite this article: 

Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新), Chao Chang(常超)†, and Guozhi Liu(刘国治)‡ A new viewpoint and model of neural signal generation and transmission: Signal transmission on myelinated neuron 2020 Chin. Phys. B 29 108701

Fig. 1.  

(a) Schematic diagram of a myelinated nerve fibre structure and (b) schematic diagram of the myelinated nerve fibre ion channel distribution.

Fig. 2.  

Schematic diagram of the model.

Fig. 3.  

Time-domain waveforms of low-frequency action potentials at different Ranvier’s nodes (The action potential at j = 10, j = 20, and j = 30 Ranvier’s nodes were shown).

Fig. 4.  

Time-domain waveforms and frequency spectrum of high-frequency electromagnetic fields at points A, B, and C in Fig. 2.

Fig. 5.  

Waveform of signals at different positions for myelin lengths L → + ∞.

Fig. 6.  

The waveform of the action potential between two adjacent Ranvier’s nodes when the length of the myelin sheath is finite (panels (a)–(d) indicate that the length of the myelin sheath is 3 mm, 7 mm, 8.3 mm, and 10 mm, respectively, other parameters are set as follows: neuron diameter 5 μm, ambient temperature 10 °C).

Temperature/°C 5 10 15 20 25 30 35 40
lT/mm (d = 5 μm) 17.8 8.3 5.7 3.7 2.5 1.6 1.0 0.7
lT/mm (d = 10 μm) 28.4 19.5 13.1 10.5 6.9 3.7 2.3 1.4
Table 1.  

Myelin length thresholds that guarantee signal recovery at different temperatures.

Fig. 7.  

The effect of ion channel density on the limit length of myelin sheath. Panel (a) indicates the effect of sodium ion channels and panel (b) indicates the effect of potassium ion channels (the neuron diameter is set to 5 μm).

Fig. 8.  

Changes in the nerve conduction velocity (a) and membrane voltage (b) over time at different temperatures.

Fig. 9.  

The schematic diagram of frog sciatic nerve conduction velocity measuring device.

Fig. 10.  

Measurement of the nerve conduction velocity in a bullfrog at different temperatures. The red curve is the theoretical calculation result. Panels (a) and (b) show a monotonic rise in temperature. At the time of measurement, panel (c) shows a random temperature change (30 °C → 18 °C → 11 °C → 16 °C → 19 °C → 15 °C → 17 °C →35 °C → 29 °C → 25 °C → 27 °C → 20 °C → 24 °C → 32 °C → 33 °C → 21 °C → 22 °C → 26 °C → 23 °C → 28 °C → 31 °C → 34 °C). Panel (d) shows the measurement results when the temperature decreases monotonically.

Fig. 11.  

The schematic diagram of effect of temperature on the signal spectrum, the signal has two characteristic frequencies, which are denoted as mode 1 (lower frequency) and mode 2 (higher frequency).

Fig. 12.  

The effect of temperature on the eigenmode, panel (a) represents the center frequency of the two modes, and panel (b) represents the bandwidth of the two modes, the modes 1 and 2 are represented by blue and red curves, respectively.

Fig. 13.  

The effect of temperature on the average electromagnetic field energy density at point A in Fig. 2(a) and the signal power (b) (the neuron diameter is 10 μm).

[1]
Hodgkin A L, Huxley A F 1952 The Journal of Physiology 117 500
[2]
Hodgkin A L, Huxley A F 1952 The Journal of Physiology 116 449
[3]
Hodgkin A L, Huxley A F 1952 The Journal of Physiology 116 497
[4]
Hodgkin A L, Huxley A F, Katz B 1952 The Journal of Physiology 116 424
[5]
Hodgkin A L 1951 Biol. Rev. 26 339
[6]
Hodgkin A L, Huxley A F 1952 The Journal of Physiology 116 473
[7]
Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting Massachusetts MIT Press 31 50
[8]
Fitzhugh R 1962 Biophys. J. 2 11
[9]
Goldman L, Albus J S 1968 Biophys. J. 8 596
[10]
Moore J W, Joyner R W, Brill M H, Waxman S D, Najarjoa M 1978 Biophys. J. 21 147
[11]
Tang R D, Dai J P 2014 PLoS One 9 1
[12]
Devyatkov N D 1974 Sov. Phys. Usp. 16 168
[13]
Traill R R 2011 9th International Fröhlich’s Symposium: Electrodynamic Activity of Living Cells (Including Microtubule Coherent Modes and Cancer Cell Physics) July 1–3, 2011 Prague, Czech Republic 184
[14]
Kumar S, Boone K, Tuszynski J, Barclay P E, Simon C 2016 Sci. Rep. 6 36508
[15]
Zangari A, Micheli D, Galeazzi R, Tozzi A 2018 Sci. Rep. 8 539
[16]
Hameroff S R, Penrose R 2014 Phys. Life. Rev. 11 94
[17]
Hameroff S, Penrose R 2014 Phys. Life. Rev. 11 39
[18]
Hameroff S R, Craddock T J A, Tuszynski J A 2014 J. Integr. Neurosci. 13 229
[19]
Hameroff S R, Watt R C 1982 J. Theor. Biol. 98 549
[20]
Zhang X Q, Jiang L 2019 Nano Research 12 1219
[21]
Liu G Z 2018 Chin. Sci. Bull. 63 3864
[22]
Xiang Z X, Tang C X, Chang C, Liu G Z 2020 Sci. Bull. 65 308
[23]
Xiang Z X, Tang C X, Chang C, Liu G Z 2020 A new viewpoint and model of neural signal generation and transmission: signal transmission on unmyelinated neurons accepted in Nano Research
[24]
Carstensen E L 1954 J. Acoust. Soc. Am. 26 858
[25]
Ford M C, Alexandrova O, Cossell L, Stangemarten A, Sinclair J L, Koppscheinpflug C, Pecka M, Attwell D, Grothe B 2015 Nat. Commun. 6 8073
[26]
McNeal D R 1976 IEEE Trans. Biomed. Eng. 23 329
[27]
Nicholls J G, Martin A R, Fuchs P A et al. From neuron to brain Sunderland, Massachusetts Sinauer Associates 135
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[3] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[4] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[5] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[6] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[7] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[8] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[9] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[10] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[11] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[12] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[13] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[14] Enhancement and modulation of terahertz radiation by multi-color laser pulses
Min-Jie Pei(裴敏洁), Chen-Hui Lu(卢晨晖), Xian-Wei Wang(王宪位), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(8): 084209.
[15] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
No Suggested Reading articles found!