Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 095202    DOI: 10.1088/1674-1056/ab9c12
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers

S S Ban(班帅帅)1, Q Wang(王清)1, Z J Liu(刘占军)2, C Y Zheng(郑春阳)2, X T He(贺贤土)1,2
1 HEDPS, Center for Applied Physics and Technology, School of Physics, Peking University, Beijing 100871, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  In supersonic flowing plasmas, the auto-resonant behavior of ion acoustic waves driven by stimulated Brillouin backscattering is self-consistently investigated. A nature of absolute instability appears in the evolution of the stimulated Brillouin backscattering. By adopting certain form of incident lights combined by two perpendicular linear polarization lasers or polarization rotation lasers, the absolute instability is suppressed significantly. The suppression of auto-resonant stimulated Brillouin scattering is verified with the fully kinetic Vlasov code.
Keywords:  inertial confinement fusion      laser plasma interaction      stimulated Brillouin scattering      fully kinetic simulation  
Received:  07 June 2020      Revised:  10 June 2020      Accepted manuscript online:  01 January 1900
PACS:  52.38.-r (Laser-plasma interactions)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875091 and 11975059) and the Science Challenge Project, China (Grant No. TZ2016005).
Corresponding Authors:  C Y Zheng, X T He     E-mail:  zheng_chunyang@iapcm.ac.cn;xthe@iapcm.ac.cn

Cite this article: 

S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土) Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers 2020 Chin. Phys. B 29 095202

[1] Hinkel D E, Rosen M D, Williams E A, Langdon A B, Still C H, Callahan D A, Moody J D, Michel P A, Town R P, London R A and Langer S H 2011 Phys. Plasmas 18 056312
[2] Hinkel D E and Edwards M J 2013 Plasma Phys. Control. Fusion 55 124015
[3] Craxton S, S Anderson K, Boehly T, N Goncharov V, Harding D, P Knauer J, Mccrory R, McKenty P, Meyerhofer D, F Myatt J, J Schmitt A, D Sethian J, W Short R, Skupsky S, Theobald W, L Kruer W, Tanaka K, Betti R, J B Collins T and Zuegel J 2015 Phys. Plasmas 22 110501
[4] Drake J F, Kaw P K, Lee Y C, Schmid G, Liu C S and Rosenbluth M N 1974 Phys. Fluids 17 778
[5] Rosenbluth M and Liu C 1972 Phys. Rev. Lett. 29 701
[6] DuBois D, Forslund D and Williams E 1974 Phys. Rev. Lett. 33 1013
[7] Maximov A, Oppitz R, Rozmus W and Tikhonchuk V 2000 Phys. Plasmas 7 4227
[8] Williams E, Cohen B, Divol L, Dorr M, Hittinger J, Hinkel D, Langdon A, Kirkwood R, Froula D and Glenzer S 2004 Phys. Plasmas 11 231
[9] Wang Q, Zheng C Y, Liu Z J, Cao L H, Xiao C Z, Feng Q S, Liu C S and He X T 2019 Plasma Phys. Control. Fusion 61 085017
[10] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456
[11] Lefebvre E, Berger R L, Langdon A B, Macgowan B J, Rothenberg J E and Williams E A 1998 Phys. Plasmas 5 2701
[12] Fuchs J, Labaune C, Depierreux S, Baldis H A and Michard A 2000 Phys. Rev. Lett. 84 3089
[13] Afeyan B and Hller S 2013 EPJ Web Conf. 59 05009
[14] Liu Z, Zheng C, Cao L, Li B, Xiang J and Hao L 2017 Phys. Plasmas 24 032701
[15] Barth I and Fisch N J 2016 Phys. Plasmas 23 102106
[16] Ban S, Wang Q, Liu Z, Zheng C and He X 2020 AIP Adv. 10 025123
[17] Liu Z J, Zhu S p, Cao L H, Zheng C Y, He X T and Wang Y 2009 Phys. Plasmas 16 112703
[18] Wang Q, Liu Z, Zheng C, Xiao C, Feng Q, Zhang H and He X 2018 Phys. Plasmas 25 012708
[19] Liu C S, Rosenbluth M N and White R B 1974 Phys. Fluids 17 1211
[20] Hao L, Li J, Liu W D, Yan R and Ren C 2016 Phys. Plasmas 23 042702
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[3] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[4] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[5] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[6] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[7] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[8] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[9] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[10] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[11] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[12] Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target
Xue-Ren Hong(洪学仁), Wei-Jun Zhou(周伟军), Bai-Song Xie(谢柏松), Yang Yang(杨阳), Li Wang(王莉), Jian-Min Tian(田建民), Rong-An Tang(唐荣安), Wen-Shan Duan(段文山). Chin. Phys. B, 2017, 26(6): 065203.
[13] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[14] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[15] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
No Suggested Reading articles found!