Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 065203    DOI: 10.1088/1674-1056/26/6/065203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target

Xue-Ren Hong(洪学仁)1, Wei-Jun Zhou(周伟军)1, Bai-Song Xie(谢柏松)2, Yang Yang(杨阳)1, Li Wang(王莉)1, Jian-Min Tian(田建民)1, Rong-An Tang(唐荣安)1, Wen-Shan Duan(段文山)1
1 Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  In order to generate high quality ion beams through the stable radiation pressure acceleration (RPA) of the near critical density (NCD) target, we propose a new type of target where an ultra-thin high density (HD) layer is attached to the front surface of an NCD target, which has a preferable self-supporting property in the RPA experiments than the ultra-thin foil target. It is found that in one-dimensional particle-in-cell (PIC) simulation, by the block of the HD layer in the new target, there emerges the hole-boring process rather than propagation in the NCD layer when the intense laser pulse impinges on this target. As a result, a typical RPA structure that the compressed electron layer overlaps the ion layer as a whole is formed and a high quality ion beam is obtained, e.g., a circularly polarized laser pulse with normalized amplitude a0=120 impinges on this new target and a 1.2 GeV monoenergetic ion beam is generated through the RPA of the NCD layer. Similar results are also found in the two-dimensional PIC simulation.
Keywords:  laser plasma interaction      radiation pressure acceleration      near critical density target  
Received:  07 January 2017      Revised:  09 March 2017      Accepted manuscript online: 
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
  41.75.Jv (Laser-driven acceleration?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11365020, 11475026, 11565022, and 11547304), the Science and Technology Program of Gansu Province of China (Grant No. 1606RJZA090), the Fundamental Research Funds for the Higher Education Institutions of Gansu Province of China (2012), the Foundation of Northwest Normal University (Grant Nos. NWNU-LKQN-14-9 and NWNU-LKQN-16-3), and partially supported by the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Wei-Jun Zhou     E-mail:  zwj_nwnu@163.com

Cite this article: 

Xue-Ren Hong(洪学仁), Wei-Jun Zhou(周伟军), Bai-Song Xie(谢柏松), Yang Yang(杨阳), Li Wang(王莉), Jian-Min Tian(田建民), Rong-An Tang(唐荣安), Wen-Shan Duan(段文山) Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target 2017 Chin. Phys. B 26 065203

[1] Shearer J W, Garrison J, Wong J and Swain J E 1973 Phys. Rev. A 8 1582
[2] Fourkal E, Shahine B, Ding M, Li J S, Tajima T and Ma C M 2002 Med. Phys. 29 2788
[3] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D and Powell H 2001 Phys. Rev. Lett. 86 436
[4] Lan K, Li Y S, Wu C S, Gu P J, Pei W B, He X T, Li S W, Yi R Q, Jiang X H, He X A, Chui Y L, Liu Y G, Ding Y K and Liu S Y 2009 Acta Phys. Sin. 58 3255 (in Chinese)
[5] Lu H Y, Wang C, Chen G L, Kim C J, Liu J S, Ni G Q, Li R X and Xu Z Z 2009 Chin. Phys. B 18 537
[6] Forslund D W and Shonk C R 1970 Phys. Rev. Lett. 25 1699
[7] Forslund D W and Freidberg J P 1971 Phys. Rev. Lett. 27 1189
[8] Denavit J 1992 Phys. Rev. Lett. 69 3052
[9] Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002
[10] Maksimchuk A, Gu S, Flippo K, Umstadter D and Bychenkov V Y 2000 Phys. Rev. Lett. 84 4108
[11] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D and Campbell E M 2000 Phys. Rev. Lett. 85 2945
[12] Schreiber J, Bell F, Grüner F, Schramm U, Geissler M, Schnürer M, Ter-Avetisyan S, Hegelich B M, Cobble J, Brambrink E, Fuchs J, Audebert P and Habs D 2006 Phys. Rev. Lett. 97 045005
[13] Askar'yan G A, Bulanov S V, Pagoraro F and Pukhov A M 1994 JETP Lett. 60 251, ISSN: 0021-3640/94/040251-07
[14] Bulanov S V, Lontano M, Esirkepov T Z, Pegoraro F and Pukhov A M 1996 Phys. Rev. Lett. 76 3562
[15] Mourou G, Chang Z, Maksimchuk A, Nees J, Bulanov S V, Bychenkov V Y, Esirkepov T Z, Naumova N M, Pegoraro F and Ruhl H 2002 Plasma Phys. Rep. 28 12
[16] Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H and Bulanov S V 2009 Phys. Rev. Lett. 103 165003
[17] Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003
[18] Shen B F and Xu Z Z 2001 Phys. Rev. E 64 056406
[19] Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Phys. Rev. Lett. 94 165003
[20] Zhang X M, Shen B F, Cang Y, Li X M, Jin Z Y and Wang F C 2007 Phys. Lett. A 369 339
[21] Robinson A P L, Zepf M, Kar S, Evans R G and Bellei C 2008 New J. Phys. 10 013021
[22] Yan X Q, Liu B C, He Z H, Sheng Z M, Guo Z Y, Lu Y R, Fang J X and Chen J E 2008 Chin. Phys. Lett. 25 3330
[23] Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W and Habs D 2009 Phys. Rev. Lett. 103 245003
[24] Macchi A, Veghini S and Pegoraro F 2009 Phys. Rev. Lett. 103 085003
[25] Jin Z Y, Shen B F, Zhang X M, Wang F C and Ji L L 2009 Chin. Phys. B 18 5395
[26] Chen M, Pukhov A and Yu T P 2009 Phys. Rev. Lett. 103 024801
[27] Qiao B, Zepf M, Borghesi M and Geissler M 2009 Phys. Rev. Lett. 102 145002
[28] Robinson A P L, Gibbon P, Zepf M, Kar S, Evans R G and Bellei C 2009 Plasma Phys. Control. Fusion 51 024004
[29] Robinson A P L, Kwon D H and Lancaster K 2009 Plasma Phys. Control. Fusion 51 095006
[30] Yu T P, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
[31] Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A and Gibbon P 2010 Phys. Rev. Lett. 105 155002
[32] Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M and Borghesi M 2012 Phys. Rev. Lett. 109 185006
[33] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751
[34] Pae K H, Kim C M and Nam C H 2016 Phys. Plasmas 23 033117
[35] Wang F C 2016 Chin. Phys. B 25 054102
[36] Bin J H, Ma W J, Wang H Y, Streeter M J V, Kreuzer C, Kiefer D, Yeung M, Cousens S, Foster P S, Dromey B, Yan X Q, Ramis R, Meyer-ter-Vehn J, Zepf M and Schreiber J 2015 Phys. Rev. Lett. 115 064801
[37] Wang J W, Yu W, Yu M Y, Xu H, Ju J J, Luan S X, Murakami M, Zepf M and Rykovanov S 2016 Phys. Rev. Accel. Beams 19 021301
[38] Hu R H, Liu B, Lu H Y, Zhou M L, Lin C, Sheng Z M, Chen C E, He X T and Yan X Q 2015 Sci. Rep. 5 15499
[39] Liu B, Hu R H, Wang H Y, Wu D, Liu J, Chen C E, Meyer-ter-Vehn J, Yan X Q and He X T 2015 Phys. Plasmas 22 080704
[40] Shen B F, Zhang X M, Sheng Z M, Yu M Y and Cary J 2009 Phys. Rev. ST Accel. Beams 12 121301
[41] Nieter C and Cary J R 2004 J. Comput. Phys. 196 448
[42] Kaw P and Dawson J 1970 Phys. Fluids 13 472
[43] Kruer W L 1988 The Physics of Laser Plasma Interactions (Boston: Addison-Wesley) p. 90
[1] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[2] Suppression of multiple ion bunches and generation of monoenergetic ion beams in laser foil-plasma
Zhang Shan(张闪), Xie Bai-Song(谢柏松), Hong Xue-Ren(洪学仁), Wu Hai-Cheng(吴海城), Aimierding Aimidula(艾米尔丁·艾米都拉), Zhao Xue-Yan(赵学燕), and Liu Ming-Ping(刘明萍). Chin. Phys. B, 2011, 20(1): 015206.
[3] Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype
Li Zhi-Chao(李志超), Zheng Jian(郑坚), Ding Yong-Kun(丁永坤), Yin Qiang(尹强), Jiang Xiao-Hua(蒋小华), Li San-Wei(李三伟), Guo Liang(郭亮), Yang Dong(杨冬), Wang Zhe-Bin(王哲斌), Zhang Huan(章欢), Liu Yong-Gang(刘永刚), Zhan Xia-Yu(詹夏宇), and Tang Qi(唐琦). Chin. Phys. B, 2010, 19(12): 125202.
[4] A numerical simulation of the backward Raman amplifying in plasma
Wang Hong-Yu (王虹宇), Huang Zu-Qia (黄祖洽). Chin. Phys. B, 2005, 14(12): 2560-2564.
No Suggested Reading articles found!