|
|
Facile and fast growth of high mobility nanoribbons of ZrTe5 |
Jingyue Wang(王璟岳)1, Jingjing Niu(牛晶晶)1, Xinqi Li(李新祺)1, Xiumei Ma(马秀梅)1, Yuan Yao(姚湲)2, Xiaosong Wu(吴孝松)1,3,4 |
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; 4 Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China |
|
|
Abstract Recently, ZrTe5 has received a lot of attention as it exhibits various topological phases, such as weak and strong topological insulators, a Dirac semimetal, a three-dimensional quantum Hall state, and a quantum spin Hall insulator in the monolayer limit. While most of studies have been focused on the three-dimensional bulk material, it is highly desired to obtain nanostructured materials due to their advantages in device applications. We report the synthesis and characterizations of ZrTe5 nanoribbons. Via a silicon-assisted chemical vapor transport method, long nanoribbons with thickness as thin as 20 nm can be grown. The growth rate is over an order of magnitude faster than the previous method for the bulk crystals. Moreover, transport studies show that the nanoribbons are of low unintentional doping and high carrier mobility, over 30000 cm2/V·s, which enable reliable determination of the Berry phase of π in the ac plane from quantum oscillations. Our method holds great potential in growth of high quality ultra-thin nanostructures of ZrTe5.
|
Received: 09 March 2020
Revised: 02 April 2020
Accepted manuscript online:
|
PACS:
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600, 2016YFA0300802, 2013CB932904, and 2016YFA0202500) and the National Natural Science Foundation of China (Grant Nos. 11574005, 11774009, and 11234001). |
Corresponding Authors:
Xiaosong Wu
E-mail: xswu@pku.edu.cn
|
Cite this article:
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松) Facile and fast growth of high mobility nanoribbons of ZrTe5 2020 Chin. Phys. B 29 068102
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Kitaev A 2009 AIP Conf. Proc. 1134 22
|
[4] |
Roy R 2008 arXiv:0803.2868 [cond-mat.mes-hall]
|
[5] |
Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
|
[6] |
Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001
|
[7] |
Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
|
[8] |
Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
|
[9] |
Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301
|
[10] |
Wang H and Wang J 2018 Chin. Phys. B 27 107402
|
[11] |
Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
|
[12] |
Yu W, Jiang Y, Yang J, Dun Z L, Zhou H D, Jiang Z, Lu P and Pan W 2016 Sci. Rep. 6 35357
|
[13] |
Zhou Y, Wu J, Ning W, Li N, Du Y, Chen X, Zhang R, Chi Z, Wang X, Zhu X, Lu P, Ji C, Wan X, Yang Z, Sun J, Yang W, Tian M, Zhang Y and Mao H 2016 Proc. Natl. Acad. Sci. USA 113 2904
|
[14] |
Chen R Y, Zhang S J, Schneeloch J A, Zhang C, Li Q, Gu G D and Wang N L 2015 Phys. Rev. B 92 075107
|
[15] |
Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
|
[16] |
Yuan X, Zhang C, Liu Y, Narayan A, Song C, Shen S, Sui X, Xu J, Yu H, An Z, Zhao J, Sanvito S, Yan H and Xiu F 2016 NPG Asia Mater 8 e325
|
[17] |
Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
|
[18] |
Pariari A and Mandal P 2017 Sci. Rep. 7 40327
|
[19] |
Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
|
[20] |
Manzoni G, Gragnaniello L, Autés G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L, Bisti F, Bugnon Ph, Magrez A, Strocov V N, Berger H, Yazyev O V, Fonin M, Parmigiani F and Crepaldi A 2016 Phys. Rev. Lett. 117 237601
|
[21] |
Li X B, Huang W K, Lv Y Y, Zhang K W, Yang C L, Zhang B B, Chen Y B, Yao S H, Zhou J, Lu M H, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y F and Xing D Y 2016 Phys. Rev. Lett. 116 176803
|
[22] |
Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z and Zhang L 2019 Nature 569 537
|
[23] |
Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
|
[24] |
Niu J, Wang J, He Z, Zhang C, Li X, Cai T, Ma X, Jia S, Yu D and Wu X 2017 Phys. Rev. B 95 035420
|
[25] |
Lu J, Zheng G, Zhu X, Ning W, Zhang H, Yang J, Du H, Yang K, Lu H, Zhang Y and Tian M 2017 Phys. Rev. B 95 125135
|
[26] |
Zhang J L, Guo C Y, Zhu X D, Ma L, Zheng G L, Wang Y Q, Pi L, Chen Y, Yuan H Q and Tian M L 2017 Phys. Rev. Lett. 118 206601
|
[27] |
Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
|
[28] |
Tang F, Wang P, Wang P, Gan Y, Wang L, Zhang W and Zhang L 2018 Chin. Phys. B 27 087307
|
[29] |
Chi H, Zhang C, Gu G, Kharzeev D E, Dai X and Li Q 2017 New J. Phys. 19 015005
|
[30] |
Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X, Sanvito S, Xia Z, Li L, Wang Z and Xiu F 2016 Nat. Commun. 7 12516
|
[31] |
Imura K I, Okamoto M, Yoshimura Y, Takane Y and Ohtsuki T 2012 Phys. Rev. B 86 245436
|
[32] |
Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
|
[33] |
Zhou J J, Feng W, Liu C C, Guan S and Yao Y 2014 Nano Lett. 14 4767
|
[34] |
Zhang Y and Vishwanath A 2010 Phys. Rev. Lett. 105 206601
|
[35] |
Peng H L, Lai K J, Kong D S, Meister S, Chen Y L, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
|
[36] |
Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815
|
[37] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[38] |
Sodeck H, Mikler H and Komarek K 1979 Monatshefte For Chem. Chem. Mon. 110 1
|
[39] |
Levy F and Berger H 1983 J. Cryst. Growth 61 61
|
[40] |
Taguchi I, Grisel A and Levy F 1983 Solid State Commun. 46 299
|
[41] |
Okada S, Sambongi T, Ido M, Tazuke Y, Aoki R and Fujita O 1982 J. Phys. Soc. Jpn. 51 460
|
[42] |
DiSalvo F J, Fleming R M and Waszczak J 1981 Phys. Rev. B 24 2935
|
[43] |
Tritt T M, Lowhorn N D, Littleton R T, Pope A, Feger C R and Kolis J W 1999 Phys. Rev. B 60 7816
|
[44] |
Manzoni G, Sterzi A, Crepaldi A, Diego M, Cilento F, Zacchigna M, Bugnon P, Berger H, Magrez A, Grioni M and Parmigiani F 2015 Phys. Rev. Lett. 115 207402
|
[45] |
Xu B, Zhao L X, Marsik P, Sheveleva E, Lyzwa F, Dai Y M, Chen G F, Qiu X G and Bernhard C 2018 Phys. Rev. Lett. 121 187401
|
[46] |
Wu M, Zhang H, Zhu X, Lu J, Zheng G, Gao W, Han Y, Zhou J, Ning W and Tian M 2019 Chin. Phys. Lett. 36 067201
|
[47] |
Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
|
[48] |
Wang J Y, Niu J J, Yan B M, Li X Q, Bi R, Yao Y, Yu D P and Wu X S 2018 Proc. Natl. Acad. Sci. USA 115 9145
|
[49] |
Chen Z G, Chen R Y, Zhong R D, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G D and Wang N L 2017 Proc. Natl. Acad. Sci. USA 114 816
|
[50] |
Kamm G N, Gillespie D J, Ehrlich A C, Wieting T J and Levy F 1985 Phys. Rev. B 31 7617
|
[51] |
Zheng G, Zhu X, Lu J, Ning W, Zhang H, Gao W, Han Y, Yang J, Du H, Yang K, Zhang Y and Tian M 2017 Phys. Rev. B 96 121401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|