PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Interaction of supersonic molecular beam with low-temperature plasma |
Dong Liu(刘东)1, Guo-Feng Qu(曲国峰)1, Zhan-Hui Wang(王占辉)2, Hua-Jie Wang(王华杰)2, Hao Liu(刘灏)2, Yi-Zhou Wang(王艺舟)1, Zi-Xu Xu(徐子虚)1, Min Li(李敏)1, Chao-Wen Yang(杨朝文)1, Xing-Quan Liu(刘星泉)1, Wei-Ping Lin(林炜平)1, Min Yan(颜敏)1, Yu Huang(黄宇)1, Yu-Xuan Zhu(朱宇轩)2, Min Xu(许敏)2, Ji-Feng Han(韩纪锋)1 |
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Physics, Sichuan University, Chengdu 610064, China; 2 Southwestern Institute of Physics, Chengdu 610041, China |
|
|
Abstract The interaction between the supersonic molecular beam (SMB) and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device. In this work, the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device (LEAD) in Southwestern Institute of Physics, China. It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly, while the low-density SMB can hardly affect the distribution of plasma density. This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma. Moreover, the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction. The simulation results can be used to analyze and explain the experimental results well.
|
Received: 24 January 2020
Revised: 05 March 2020
Accepted manuscript online:
|
PACS:
|
52.40.Mj
|
(Particle beam interactions in plasmas)
|
|
37.20.+j
|
(Atomic and molecular beam sources and techniques)
|
|
52.25.-b
|
(Plasma properties)
|
|
07.05.-t
|
(Computers in experimental physics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575121, 11275133, and 11575055) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004). |
Corresponding Authors:
Guo-Feng Qu, Ji-Feng Han
E-mail: quguofeng@scu.edu.cn;hanjf@scu.edu.cn
|
Cite this article:
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋) Interaction of supersonic molecular beam with low-temperature plasma 2020 Chin. Phys. B 29 065208
|
[1] |
Xiao J S, Yang Z J, Liu M H, Zhuang G, Pan X M, Zhang C and Wang Z J 2015 J. Fusion Energy 34 1020
|
[2] |
Sajjad S, Gao X, Ling B, Bhatti S H and Ang T 2009 Phys. Lett. A 373 1133
|
[3] |
Yuan J B, Yuan B D, Xu M, Yu Y, Nie L, Ke R, Wang Z H, Gong S B, Wu T, Wu Y F, Long T, Wang H J, Liu H and Yue W 2019 Plasma Sci. Technol. 21 084002
|
[4] |
Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Murakami M, Gohil P, Burrell K H, Greenfield C M, Groebner R J, Hsieh C L, La Haye R J, Parks P B, Staebler G M, Team D I I I D, Schmidt G L, Ernst D R, Synakowski E J and Porkolab M 2000 Phys. Plasmas 7 1878
|
[5] |
Yao L H, Feng B B, Feng Z, Luo J L, Dong J F, Yan L W and Hong W Y 2001 Plasma Sci. Technol. 3 589
|
[6] |
Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H and Sun W G 2016 Chin. Phys. B 25 095201
|
[7] |
Rajeev R, Raja S V, Trivikram T M, Rishad K P M and Krishnamurthy M 2013 J. Appl. Phys. 114 083112
|
[8] |
Liu D, Han J F, Chen Z Y, Bai L X and Zhou J X 2016 Rev. Sci. Instrum. 87 123504
|
[9] |
Chen Z Y, Li M, Zhou M L, Liu D, Qu G F, Wang Y Z and Han J F 2019 J. Fusion Energy 38 228
|
[10] |
Yao L H, Zhou Y, Cao J Y, Feng B B, Feng Z, Luo J L, Dong J F, Yan L W, Hong W Y, Li K H, Cui Z Y, Liu Y, Wang E Y, Yan J C and HL-1M Team 2001 Nucl. Fusion 41 817
|
[11] |
Yao L H, Feng B B, Chen C Y, Shi Z B, Yuan B S, Zhou Y, Duan X R, Sun H J, Lu J, Jiao Y M, Ni G Q, Lu H Y, Xiao W W, Li W, Pan Y D, Hong W Y, Ran H, Ding X T and Liu Y 2007 Nucl. Fusion 47 1399
|
[12] |
Yu D Y, Chen C Y, Yao L H, Feng B B, Han X Y, Yang L M, Zhong W L, Zhou Y, Zhao K J, Huang Y, Liu Y, Yan L W, Yang Q W, Dong J Q and Duan X R 2010 Nucl. Fusion 50 035009
|
[13] |
Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B and Duan X R 2010 Plasma Sci. Technol. 12 529
|
[14] |
Yuan X L, Li J G, Wu J H, Li J H, Chen Y, Zhuang H D, Zhou Y, Zheng X W and Hu J S 2018 Fusion Eng. Des. 134 62
|
[15] |
Takenaga H, Miyo Y, Bucalossi J, Marty V, Urano H, Asakura N, Nishiyama T, Sasajima T, Masaki K and Kaminaga A 2010 Nucl. Fusion 50 115003
|
[16] |
Shi Z B, Yao L H, Ding X T, Duan X R, Feng B B, Liu Z T, Xiao W W, Sun H J, Li X, Li W, Chen C Y and Jiao Y M 2007 Acta Phys. Sin. 56 4771 (in Chinese)
|
[17] |
Wu X K, Li H D, Wang Z H, Feng H and Zhou Y L 2017 Chin. Phys. B 26 065201
|
[18] |
Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
|
[19] |
Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H and Sun W G 2015 Phys. Plasmas 22 012503
|
[20] |
Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K and Xiang N 2016 Chin. Phys. B 25 106601
|
[21] |
Liu H 2018 Design and Construction of Linear Experimental Advanced Device, MS dissertation (Hefei: University of Science and Technology of China) (in Chinese)
|
[22] |
Anderson C A, Hopkins M B and Graham W G 1990 Rev. Sci. Instrum. 61 448
|
[23] |
Tachibana K, Nishida M, Harima H and Urano Y 1984 J. Phys. D: Appl. Phys. 17 1727
|
[24] |
Shinohara S, Hada T, Motomura T, Tanaka K, Tanikawa T, Toki K, Tanaka Y and Shamrai K P 2009 Phys. Plasmas 16 057104
|
[25] |
Shinohara S, Nishida H, Tanikawa T, Hada T, Funaki I and Shamrai K P 2014 IEEE T. Plasma Sci. 42 1245
|
[26] |
Katsonwas K, Berenguer Ch, Kaminska A and Dudeck M 2011 Int. J. Aerosp. Eng. 2011 896836
|
[27] |
Boffard J B, Chiaro B, Weber T and Lin C C 2007 Atom. Data Nucl. Data 93 831
|
[28] |
Barata J A S 2007 Nucl. Instrum. Method B 580 14
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|