Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 065208    DOI: 10.1088/1674-1056/ab8457
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Interaction of supersonic molecular beam with low-temperature plasma

Dong Liu(刘东)1, Guo-Feng Qu(曲国峰)1, Zhan-Hui Wang(王占辉)2, Hua-Jie Wang(王华杰)2, Hao Liu(刘灏)2, Yi-Zhou Wang(王艺舟)1, Zi-Xu Xu(徐子虚)1, Min Li(李敏)1, Chao-Wen Yang(杨朝文)1, Xing-Quan Liu(刘星泉)1, Wei-Ping Lin(林炜平)1, Min Yan(颜敏)1, Yu Huang(黄宇)1, Yu-Xuan Zhu(朱宇轩)2, Min Xu(许敏)2, Ji-Feng Han(韩纪锋)1
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Physics, Sichuan University, Chengdu 610064, China;
2 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  The interaction between the supersonic molecular beam (SMB) and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device. In this work, the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device (LEAD) in Southwestern Institute of Physics, China. It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly, while the low-density SMB can hardly affect the distribution of plasma density. This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma. Moreover, the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction. The simulation results can be used to analyze and explain the experimental results well.
Keywords:  supersonic molecular beam      low-temperature plasma      emission      electron density diagnosis      high-speed camera  
Received:  24 January 2020      Revised:  05 March 2020      Accepted manuscript online: 
PACS:  52.40.Mj (Particle beam interactions in plasmas)  
  37.20.+j (Atomic and molecular beam sources and techniques)  
  52.25.-b (Plasma properties)  
  07.05.-t (Computers in experimental physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575121, 11275133, and 11575055) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004).
Corresponding Authors:  Guo-Feng Qu, Ji-Feng Han     E-mail:  quguofeng@scu.edu.cn;hanjf@scu.edu.cn

Cite this article: 

Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋) Interaction of supersonic molecular beam with low-temperature plasma 2020 Chin. Phys. B 29 065208

[1] Xiao J S, Yang Z J, Liu M H, Zhuang G, Pan X M, Zhang C and Wang Z J 2015 J. Fusion Energy 34 1020
[2] Sajjad S, Gao X, Ling B, Bhatti S H and Ang T 2009 Phys. Lett. A 373 1133
[3] Yuan J B, Yuan B D, Xu M, Yu Y, Nie L, Ke R, Wang Z H, Gong S B, Wu T, Wu Y F, Long T, Wang H J, Liu H and Yue W 2019 Plasma Sci. Technol. 21 084002
[4] Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Murakami M, Gohil P, Burrell K H, Greenfield C M, Groebner R J, Hsieh C L, La Haye R J, Parks P B, Staebler G M, Team D I I I D, Schmidt G L, Ernst D R, Synakowski E J and Porkolab M 2000 Phys. Plasmas 7 1878
[5] Yao L H, Feng B B, Feng Z, Luo J L, Dong J F, Yan L W and Hong W Y 2001 Plasma Sci. Technol. 3 589
[6] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H and Sun W G 2016 Chin. Phys. B 25 095201
[7] Rajeev R, Raja S V, Trivikram T M, Rishad K P M and Krishnamurthy M 2013 J. Appl. Phys. 114 083112
[8] Liu D, Han J F, Chen Z Y, Bai L X and Zhou J X 2016 Rev. Sci. Instrum. 87 123504
[9] Chen Z Y, Li M, Zhou M L, Liu D, Qu G F, Wang Y Z and Han J F 2019 J. Fusion Energy 38 228
[10] Yao L H, Zhou Y, Cao J Y, Feng B B, Feng Z, Luo J L, Dong J F, Yan L W, Hong W Y, Li K H, Cui Z Y, Liu Y, Wang E Y, Yan J C and HL-1M Team 2001 Nucl. Fusion 41 817
[11] Yao L H, Feng B B, Chen C Y, Shi Z B, Yuan B S, Zhou Y, Duan X R, Sun H J, Lu J, Jiao Y M, Ni G Q, Lu H Y, Xiao W W, Li W, Pan Y D, Hong W Y, Ran H, Ding X T and Liu Y 2007 Nucl. Fusion 47 1399
[12] Yu D Y, Chen C Y, Yao L H, Feng B B, Han X Y, Yang L M, Zhong W L, Zhou Y, Zhao K J, Huang Y, Liu Y, Yan L W, Yang Q W, Dong J Q and Duan X R 2010 Nucl. Fusion 50 035009
[13] Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B and Duan X R 2010 Plasma Sci. Technol. 12 529
[14] Yuan X L, Li J G, Wu J H, Li J H, Chen Y, Zhuang H D, Zhou Y, Zheng X W and Hu J S 2018 Fusion Eng. Des. 134 62
[15] Takenaga H, Miyo Y, Bucalossi J, Marty V, Urano H, Asakura N, Nishiyama T, Sasajima T, Masaki K and Kaminaga A 2010 Nucl. Fusion 50 115003
[16] Shi Z B, Yao L H, Ding X T, Duan X R, Feng B B, Liu Z T, Xiao W W, Sun H J, Li X, Li W, Chen C Y and Jiao Y M 2007 Acta Phys. Sin. 56 4771 (in Chinese)
[17] Wu X K, Li H D, Wang Z H, Feng H and Zhou Y L 2017 Chin. Phys. B 26 065201
[18] Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
[19] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H and Sun W G 2015 Phys. Plasmas 22 012503
[20] Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K and Xiang N 2016 Chin. Phys. B 25 106601
[21] Liu H 2018 Design and Construction of Linear Experimental Advanced Device, MS dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[22] Anderson C A, Hopkins M B and Graham W G 1990 Rev. Sci. Instrum. 61 448
[23] Tachibana K, Nishida M, Harima H and Urano Y 1984 J. Phys. D: Appl. Phys. 17 1727
[24] Shinohara S, Hada T, Motomura T, Tanaka K, Tanikawa T, Toki K, Tanaka Y and Shamrai K P 2009 Phys. Plasmas 16 057104
[25] Shinohara S, Nishida H, Tanikawa T, Hada T, Funaki I and Shamrai K P 2014 IEEE T. Plasma Sci. 42 1245
[26] Katsonwas K, Berenguer Ch, Kaminska A and Dudeck M 2011 Int. J. Aerosp. Eng. 2011 896836
[27] Boffard J B, Chiaro B, Weber T and Lin C C 2007 Atom. Data Nucl. Data 93 831
[28] Barata J A S 2007 Nucl. Instrum. Method B 580 14
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[4] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[9] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[10] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[13] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[14] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[15] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
No Suggested Reading articles found!