Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 053104    DOI: 10.1088/1674-1056/ab8205
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab initio studies on ammonium iodine under high pressure

Mengya Lu(鲁梦雅)1, Yanping Huang(黄艳萍)1, Fubo Tian(田夫波)1, Da Li(李达)1, Defang Duan(段德芳)1, Qiang Zhou(周强)1, Tian Cui(崔田)2,1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Ammonium iodine (NH4I) as an important member of hydrogen-rich compounds has attracted a great deal of attention owing to its interesting structural changes triggered by the relative orientations of adjacent ammonium ions. Previous studies of ammonium iodide have remained in the low pressure range experimentally, which we first extended to so high pressure (250 GPa). We have investigated the structures of ammonium iodine under high pressure through ab initio evolutionary algorithm and total energy calculations based on density functional theory. The static enthalpy calculations show that phase V is stable until 85 GPa where a new phase Ibam is identified. Calculations of phonon spectra show that the Ibam phase is stable between 85 GPa and 101 GPa and the Cm phase is stable up to 130 GPa. In addition, ammonium iodine dissociates into NH3, H2, and I2 at 74 GPa. Subsequently, we analyzed phonon spectra and electronic band structures, finding that phonon softening is not the reason of dissociation and NH4I is always a semiconductor within the pressure range.
Keywords:  hydrogen-rich compounds      high pressure      phase transition  
Received:  06 January 2020      Revised:  13 March 2020      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574109, 51632002, 51572108, 91745203, and 11574112), the National Key Research and Development Program of China (Grant Nos. 2016YFB0201204 and 2018YFA0305900), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_15R23), and the National Fund for Fostering Talents of Basic Science of China (Grant No. J1103202).
Corresponding Authors:  Fubo Tian, Tian Cui     E-mail:  tianfubo@jlu.edu.cn;cuitian@jlu.edu.cn

Cite this article: 

Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田) Ab initio studies on ammonium iodine under high pressure 2020 Chin. Phys. B 29 053104

[1] Duan D F, Tian F B, He Z, Meng X, Wang L C, Chen C B, Zhao X S, Liu B B and Cui T 2010 J. Chem. Phys. 133 074509
[2] Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S and Gross E K U 2008 Phys. Rev. Lett. 100 257001
[3] McMahon J M and Ceperley D M 2011 Phys. Rev. B 84 144515
[4] Drozdov A, Eremets M and Troyan I 2015 arXiv:1508.06224vl
[5] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 107001
[6] Dias R P and Silvera I F 2017 Science 355 715
[7] N W 2004 Phys. Rev. Lett. 92 187002
[8] Duan D F, Huang X L, Tian F B, Li D, Yu H Y, Liu Y X, Ma Y B, Liu B B and Cui T 2015 Phys. Rev. B 91 180502
[9] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S 2015 Nature 525 73
[10] Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, John S T and Hemely R J 2018 Phys. Rev. B 98 100102
[11] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemely R J 2019 Phys. Rev. Lett. 122 027001
[12] Heil C, Simone D C, Bachelet G B and Boeri L 2019 Phys. Rev. B 99 220502
[13] Pistorius C W 1976 Prog. Solid State Ch. 11 1
[14] Hochheimer H D, Spanner E and Strauch D 1976 J. Chem. Phys. 64 1583
[15] Heyns A M, Hirsch K R and Holzapfel W B 1980 J. Chem. Phys. 73 105
[16] Pistorius C W F T 1969 J. Chem. Phys. 50 1436
[17] Heyns A M, Hirsch K R and Holzapfel W B 1979 Solid. State. Commun. 29 351
[18] Stevenson R 1961 J. Chem. Phys. 34 346
[19] Press W, Eckert J, Cox D E, Rotter C and Kamitakahara W 1976 Phys. Rev. B 14 1983
[20] Leung R C, Zahradnik C and Garland C W 1979 Phys. Rev. B 19 2612
[21] Andersson P and Ross R G 1987 J. Phys. C. Solid. State. 20 4737
[22] Huang Y P, Huang X L, Wang L, Wu G, Duan D F, Bao K, Zhou Q, Liu B B and Cui T 2015 RSC. Adv. 5 40336
[23] Yamada Y, Mori M and Noda Y 1972 J. Phys. Soc. Jpn. 32 1565
[24] Vaks V G and Schneider V E 1976 Phys. Status Solidi (a) 35 61
[25] Hüller A 1974 Z. Phys. 270 343
[26] Jeon S J, Porter R F, Vohra Y K and Ruoff A L 1987 Phys. Rev. B Condens. Matter 35 4954
[27] Seymour R T and A W 1970 Acta Crystall B-Stru 26 1487
[28] Goyal P S and Dasannacharya B A 1979 J. Phys. C. Solid. State. 12 219
[29] Kozlenko D P, Glazkov V P, Savenko B N, Somenkov V A and Hull S 2000 Int. J. High Press. Res. 17 235
[30] Glazkov V P, Kozlenko D P, Savenko B N and Somenkov V A 2000 J. Exp. Theor. Phys. 90 319
[31] Glazkov V P, Kozlenko D P, Savenko B N, Somenkov V A and Telepnev A S 2001 J. Exp. Theor. Phys. Lett. 74 415
[32] Kolomiichuk V N 1966 Sov. Phys. Crystallogr. 10 475
[33] Durig J R and Antion D J 1969 J. Chem. Phys. 51 3639
[34] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[35] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chemical Research 44 227
[36] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[41] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[42] Levy H A and Peterson S W 1953 J. Am. Chem. Soc. 75 1536
[43] Balagurov A M, Kozlenko D P, Savenko B N, Glazkov V P, Somenkov V A and Hull S 1999 Phys. B: Condens. Matter 265 92
[44] Binns J, Liu X D, Philip D S, Afonina V, Gregoryanz E and Howie R T 2017 Phys. Rev. B 96 144105
[45] Tian F B, Li D, Duan D F, Chen C B, He Z, Sha X J, Zhao Z L, Liu B B and Cui T 2014 Chin. Sci. Bull. 59 5272
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Effect of f-c hybridization on the γα phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!