Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050601    DOI: 10.1088/1674-1056/ab7d98
GENERAL Prev   Next  

Analysis of iris-loaded resonance cavity in miniaturized maser

Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣)
National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The size reduction of atomic clocks is a long-standing research issue. Many atomic clocks such as passive hydrogen masers (PHMs) and compact rubidium masers (CRMs) use iris-loaded resonance cavities (IRCs) as their microwave cavities because they can dramatically reduce the radical sizes of the atomic clocks. In this paper, the electromagnetic characteristic of the IRC is investigated by a theoretical model based on electromagnetic field theory. The formulas to calculate the resonance frequency, quality factor, and magnetic energy filling factor are presented. The relationship between the IRC structure and its electromagnetic characteristic is clarified. The theoretical calculation results accord well with the electromagnetic software simulations and experimental results. The results in this paper should be helpful in understanding the physical mechanism of the IRC and designing the atomic clocks.
Keywords:  maser      iris-loaded resonance cavity      resonance frequency      quality factor      magnetic energy filling factor  
Received:  10 December 2019      Revised:  01 March 2020      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61371052).
Corresponding Authors:  Hua-Rong Gong     E-mail:  hrgong@uestc.edu.cn

Cite this article: 

Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣) Analysis of iris-loaded resonance cavity in miniaturized maser 2020 Chin. Phys. B 29 050601

[1] Wang Q, Mosset P, Droz F, Rochat P and Busca G 2007 38th Annual Precise Time and Time Interval (PTTI) Meeting pp. 1-12
[2] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701
[3] Cheng P F, Zhang J W and Wang L J 2019 Chin. Phys. B 28 070601
[4] Yu M Y, Meng Y L, Ye M F, Wang X, Ouyang X C, Wan J Y, Xiao L, Cheng H D and Liu L 2019 Chin. Phys. B 28 070602
[5] Wang Q, Duan J, Qi X H, Zhang Y and Chen X Z 2015 Chin. Phys. Lett. 32 54206
[6] Stefanucci C, Bandi T, Merli F, Pellaton M, Affolderbach C, Mileti G and Skrivervik A K 2012 Rev. Sci. Instrum. 83 104706
[7] Zhuang Y X, Shi D T, Li D W, Wang Y G, Zhao X N, Zhao J Y and Wang Z 2016 Chin. Phys. Lett. 33 40601
[8] Horsley A, Treutlein P, Mileti G, Affolderbach C, Du G and Bandi T 2015 IEEE Trans. Instrum. Meas. 64 3629
[9] Xia B, Zhong D, An S and Mei G 2006 IEEE Trans. Instrum. Meas. 55 1000
[10] Ivanov A, Bandi T, Du G X, Horsley A, Affolderbach C, Treutlein P, Mileti G and Skrivervik A K 2014 28th Eur. Freq. Time Forum (EFTF), June, 2014, Neuchâtel, Switzerland, pp. 208-211
[11] Kang S, Gharavipour M, Affolderbach C, Gruet F and Mileti G 2015 J. Appl. Phys. 117 104510
[12] Hartnett J, Tobar M, Stanwix P, Morikawa T, Cros D, and Piquet O 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr 52 1638
[13] Kang S, Affolderbach C, Gruet F, Gharavipour M, Calosso C E and Mileti G 2014 Proc. 28th European Frequency and Time Forum (EFTF), June 22-26, 2014, Neuchâtel, Switzerland
[14] Peters H E 1978 32nd Annual frequency Control Symposium, 31 May-2 June, 1978, Atlantic, USA, p. 469
[15] Xue L, Dou W and Cao K 1984 J. Chengdu Inst. Radio Eng. Add Vol. 1-11
[16] Annino G, Cassettari M and Martinelli M 2009 IEEE Trans. Microwave Theory Tech. 57 775
[17] Sinclair K, Goussetis G, Desmulliez M, Sangster A, Tilford T, Bailey C and Parrott A 2008 IEEE Trans. Microw. Theory Techn. 56 2635
[18] Chu Q, Ouyang X, Wang H and Chen F 2013 IEEE Trans. Microw. Theory Techn. 61 1086
[19] Pozar D 2005 Microwave Engineering, 3rd edn. (Chichester: John Wiley and Sons)
[20] Marcuvitz N 1986 Waveguide Handbook (Stevenage, UK: Peregrinus)
[21] Montgomery G 1948 Principles of microwave circuits (Radiation Laboratory Series)
[22] Rong Y and Zaki K 2000 IEEE Trans. Microw. Theory Techn. 48 258
[23] Sun W and Balanis C 1994 IEEE Trans. Microw. Theory Techn. 42 2201
[24] Hopfer S 1955 IRE Microwave Theory and Techniques 43 20
[25] March S 1985 IEEE Trans. Microw. Theory Techn. 33 269
[26] HFSS High Frequency Structure Simulator (Los Angeles, CA: Ansoft Corporation)
[1] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[2] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[3] Forward-wave enhanced radiation in the terahertz electron cyclotron maser
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2022, 31(12): 128401.
[4] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[5] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
[6] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[7] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[8] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[9] High frequency magnetic properties of ferromagnetic thin films and magnetization dynamics of coherent precession
Jiang Chang-Jun (蒋长军), Fan Xiao-Long (范小龙), Xue De-Sheng (薛德胜). Chin. Phys. B, 2015, 24(5): 057504.
[10] Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes
Qiu Hua-Cheng (邱华诚), Dara Feili, Wu Xue-Zhong (吴学忠), Helmut Seidel. Chin. Phys. B, 2014, 23(2): 027701.
[11] Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Chen Lei (陈蕾), Li Ping (李平), Wen Yu-Mei (文玉梅), Zhu Yong (朱永). Chin. Phys. B, 2013, 22(7): 077505.
[12] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[13] Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser
Zhao Ding (赵鼎), Ding Yao-Gen (丁耀根). Chin. Phys. B, 2012, 21(9): 094102.
[14] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
[15] Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers
Chen Ye(陈晔), Zhao Ding(赵鼎), Wang Yong(王勇), and Shu Wen(舒雯) . Chin. Phys. B, 2012, 21(5): 058401.
No Suggested Reading articles found!