Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040302    DOI: 10.1088/1674-1056/ab7741
GENERAL Prev   Next  

Generating Kerr nonlinearity with an engineered non-Markovian environment

Fei-Lei Xiong(熊飞雷)1, Wan-Li Yang(杨万里)1, Mang Feng(冯芒)1,2,3
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
3 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  Kerr nonlinearity is an important resource for creating squeezing and entanglement in quantum technology. Here we propose a scheme for generating Kerr nonlinearity originated from an engineered non-Markovian environment, which is different from the previous efforts using nonlinear media or quantum systems with special energy structures. In the present work, the generation of Kerr nonlinearity depends on the system-environment interaction time, the energy spectrum of the environment, and the system-environment coupling strength, regardless of the environmental initial state. The scheme can be realized in systems originally containing no Kerr interaction, such as superconducting circuit systems, optomechanical systems, and cavity arrays connected by transmission lines.
Keywords:  Kerr nonlinearity      quantum non-Markovianity      engineered environment  
Received:  02 December 2019      Revised:  26 January 2020      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304503) and the National Natural Science Foundation of China (Grant Nos. 11835011, 11574353, 11734018, and 11674360).
Corresponding Authors:  Mang Feng     E-mail:  mangfeng@wipm.ac.cn

Cite this article: 

Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒) Generating Kerr nonlinearity with an engineered non-Markovian environment 2020 Chin. Phys. B 29 040302

[1] Weinberger P 2008 Philos. Mag. Lett. 88 897
[2] Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R and Aitchison J S 1998 Phys. Rev. Lett. 81 3383
[3] Yang W X, Zha T T and Lee R K 2009 Phys. Lett. A 374 355
[4] Kelley P L 1965 Phys. Rev. Lett. 15 1005
[5] Yoshiki W and Tanabe T 2014 Opt. Express 22 24332
[6] Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H P, Gorodetsky M L and Kippenberg T J 2016 Science 351 357
[7] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
[8] Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
[9] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[10] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[11] Rosenblum S, Gao Y Y, Reinhold P, Wang C, Axline C J, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2018 Nat. Commun. 9 652
[12] Jeong H, Kim M S, Ralph T C and Ham B S 2004 Phys. Rev. A 70 061801
[13] Walls D F and Milburn G J 2007 Quantum Optics (Springer Science & Business Media)
[14] Wang C Q, Zou J and Zhang Z M 2016 Chin. Phys. Lett. 33 024202
[15] Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2016 Chin. Phys. B 19 094207
[16] Milburn G J and Walls D F 1984 Phys. Rev. A 30 56
[17] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
[18] Boyd R W 2003 Nonlinear Optics (Elsevier)
[19] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
[20] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[21] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
[22] Aldana S, Bruder C and Nunnenkamp A 2013 Phys. Rev. A 88 043826
[23] Schmidt H and Imamoglu A 1996 Opt. Lett. 21 1936
[24] Liang H, Niu Y, Deng L and Gong S 2017 Phys. Lett. A 381 3978
[25] Hu Y, Ge G Q, Chen S, Yang X F and Chen Y L 2011 Phys. Rev. A 84 012329
[26] Wu Q Q, Liao J Q and Kuang L M 2011 Chin. Phys. B 20 034203
[27] Yan L, Su S, Hou Q Z, Yang W L and Feng M 2019 Opt. Express 27 377
[28] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[29] Li L, Hall M J W and Wiseman H M 2018 Phys. Rep. 759 1
[30] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[31] Rivas Á, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001
[32] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[33] Woolley M J and Clerk A A 2014 Phys. Rev. A 89 063805
[34] Yan X B 2017 Phys. Rev. A 96 053831
[35] Didier N, Guillaud J, Shankar S and Mirrahimi M 2018 Phys. Rev. A 98 012329
[36] Pastawski F, Clemente L and Cirac J I 2011 Phys. Rev. A 83 012304
[37] Müller M, Diehl S, Pupillo G and Zoller P 2012 Advances in atomic, molecular, and optical physics, Vol. 61 (Elsevier)
[38] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[39] Yang W L, J H An, C Zhang, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
[40] Bastidas V M, Kyaw T H, Tangpanitanon J, Romero G, Kwek L C and Angelakis D G 2018 New J. Phys. 20 093004
[41] Xiong F L, Li L and Chen Z B 2019 Phys. Lett. A 383 127
[42] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[43] Kenfack A and Życzkowski K 2004 J. Opt. B: Quantum Semiclassical Opt. 6 396
[44] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge University Press)
[45] Glauber R J 1963 Phys. Rev. 131 2766
[46] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[47] Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
[48] Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, O'Malley P, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N and Martinis J M 2012 Nat. Phys. 8 719
[49] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[50] Underwood D L, Shanks W E, Koch J and Houck A A 2012 Phys. Rev. A 86 023837
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[3] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[4] Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure
Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour. Chin. Phys. B, 2016, 25(7): 074204.
[5] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[6] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[7] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[8] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[9] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[10] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[11] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[12] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[13] Enhanced Kerr nonlinearity in a left-handed three-level atomic system driven by a bichromatic field
Yang Xiao-Yu (杨晓雨), Jiang Yong-Yuan (姜永远). Chin. Phys. B, 2013, 22(11): 114204.
[14] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[15] Giant Kerr nonlinearity induced by interacting quantum coherences from decays and incoherent pumping
Bai Yan-Feng (白艳锋), Yang Wen-Xing (杨文星), Han Ding-An (韩定安), Yu Xiao-Qiang (喻小强 ). Chin. Phys. B, 2012, 21(11): 114208.
No Suggested Reading articles found!