Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047101    DOI: 10.1088/1674-1056/ab7223
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound

Wahiba Metiri1, Khaled Cheikh2
1 Département de Physique, Faculté des Sciences, Université 20 aoȗt 1955-Skikda BP 26, Route El-Hadaiek, 21000 Skikda, Algeria;
2 Département de Technologie, Faculté de Technologie, Université 20 aoȗt 1955-Skikda BP 26, Route El-Hadaiek, 21000 Skikda, Algeria
Abstract  Structural, elastic, electronic and optical properties of the Pt3Zr intermetallic compound are investigated using first principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA) and the local density approximation (LDA). The Pt3Zr compound is predicted to be of cubic L12 and hexagonal D024 structures. The calculated equilibrium ground-state properties (lattice parameters a and c, bulk modulus B and its pressure derivative B', formation enthalpy ΔH) of the Pt3Zr compound, for both cubic and hexagonal phases, show good agreement with the experimental results and other theoretical data. Elastic constants (C11, C12, C13, C33, C44, and C55) are calculated. The predicted elastic properties such as Young's modulus E and shear modulus GH, Poisson ratio ν, anisotropic ratio A, Kleinman parameter ξ, Cauchy pressure (C12-C44), ratios B/C44 and B/G, and Vickers hardness Hv indicate the stiffness, hardness and ductility of the compound. Thermal characteristic parameters such as Debye temperature θD and melting temperature Tm are computed. Electronic properties such as density of states (DOS) and electronic specific heat γ are also reported. The calculated results reveal that the Fermi level is on the psedogap for the D024 structure and on the antibonding side for the L12 structure. The optical property functions (real part ε1(ω) and imaginary part ε2(ω) of dielectric function), optical conductivity σ (ω), refraction index n(ω), reflectivity R(ω), absorption α (ω) and extinction coefficients k(ω) and loss function L(ω)) are also investigated for the first time for Pt3Zr in a large gamme of energy from 0 to 70 eV.
Keywords:  density functional theory      intermetallic      density of states      L12      D024      optical properties  
Received:  11 November 2019      Revised:  28 January 2020      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Lp (Intermetallic compounds)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Corresponding Authors:  Wahiba Metiri, Khaled Cheikh     E-mail:  wahiba_metiri@yahoo.fr;cheikh.khaled@yahoo.fr

Cite this article: 

Wahiba Metiri, Khaled Cheikh Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound 2020 Chin. Phys. B 29 047101

[1] Chen X Q, Fu C L and Morris J R 2010 Intermetallics 18 998
[2] Pan Y, Guan W M and Zhang K H 2013 Physica B 427 17
[3] Sheng L Y, Zhang W, Guo J T, Wang Z S, Ovcharenko V E, Zhou L Z and Ye H Q 2009 Intermetallics 17 572
[4] Liu C T, Stringer J, Mundy J N, Horton L L and Angelini P 1997 Intermetallics 5 579
[5] Fairbank G B, Humphreys C J, Kelly A and Jones C N 2000 Intermetallics 8 1091
[6] Miura S, Honma K, Terada Y, Sanchez J M and Mohri T 2000 Intermetallics 8 785
[7] Gao Y, Guo C, Li C and Du Z 2010 Int. J. Mater. Res. 101 819
[8] Yamabe Mitarai Y, Ro Y and Murakami H 1998 Metall. Mater. Trans. A. 29 537
[9] Yamabe Mitarai Y, Ro Y, Maruko T and Murakami H 1998 Scr. Mater. 40 109
[10] Yamabe Mitarai Y, Ro Y, Maruko T and Murakami H 1999 Intermetallics 7 49
[11] Yamabe Mitarai Y, Nakazawa S and Harada H 2000 Scr. Mater. 43 1059
[12] Yamabe Mitarai Y and Aoki H J 2003 Alloys Compd. 359 143
[13] Luo J, Li M, Li H and Yu W 2009 Mater. Sci. Eng. A. 505 88
[14] Odusote J K, Cornish L A and Chown L H 2012 Corros. Sci. 63 119
[15] Alam M Z, Kamat S V, Jayaram V and Das D K 2013 Acta Mater. 61 1093
[16] Liebscher C H and Glatzel U 2014 Intermetallics 48 71
[17] Hill P J, Mitarai Y Y and Wolff I M 2001 Scr. Mater. 44 43
[18] Jiang C, Sordelet D J and Gleeson B 2005 Phys. Rev. B 72 184203
[19] Yamabe Y, Koizumi Y, Murakami H, Maruko Y R T and Harada H 1996 Scr. Mater. 35 211
[20] Srikrishnan V and Ficalora P 1974 Metall. Mater. Trans. 5 1471
[21] Brewer L 1967 Acta Metall. 15 553
[22] Hum-Rothery W 1968 Prog. Mater. Sci. 13 229
[23] Pan Y, Guan W, Wen M, Zhang J, Wang C and Tan Z 2014 J. Alloys Compd. 585 549
[24] Yong P, Lin Y, Wang X, Chen S, Wang L, Tong C and Cao Z 2015 J. Alloys Compd. 643 49
[25] Bai X, Li J H, Dai Y and Liu B X 2013 Trans. Nonferrous Met. Soc. Chin. 23 3704
[26] Pan Y, Wang S, Jia L and Zhang X 2017 RSC Adv. 7 54772
[27] Pan Y, Lin Y H, Wang H, Guo J M, Singh A and Fu C Y 2016 Comput. Mater. Sci. 111 74
[28] Li H, Choi J J, Schmölzer W M, Weilach C, Rameshan C, Mittendorfer F et al 2015 J. Phys. Chem. C 119 2462
[29] Antlanger M, Schmolzer W M, Pavelec J, Mittendorfer F, Redinger J, Varga P et al Diebold U 2012 Phys. Rev. B. 86 035451
[30] Lu Y, Lu W G and Wang L 2017 Chin. Phys. Lett. 34 017102
[31] Li X Y, Huang C, Zhu Y, Li J B, Fan J Y, Pan Y F, Shi D N and Ma C L 2018 Acta Phys. Sin. 67 137101 (in Chinese)
[32] Blaha P, Schwarz K G Madsen K H, Kvasnicka D and Luitz J 2001 (Universitat Wien Austria: WIEN2K, Karlheinz Schwarz Techn.)
[33] Hohenberg P and Kohn W 1964 Phys. Rev. 136 86
[34] Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Perdew J P and Zunger A 1924 Phys. Rev. B 23 048
[36] Stalick J K and Waterstrat R M 2007 J. Alloys Compd. 430 123
[37] Stample C, Mannstadt W, Asahi R and Freeman A J 2001 Phys. Rev. B 63 155106
[38] Johannesson G H, Bligaard T, Ruban A V, Skriver H L, Jacobsen K W and Norskov J K 2002 Phys. Rev. Lett. 88 255506
[39] Popoola A I, Chown L H and Cornish L A 2014 Turkish J. Phys. 38 10
[40] Born M and Huang K 1998 Dynamical Theory of Crystal Lattices (New York: Oxford University Press)
[41] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (New York: Oxford University Press)
[42] Jamal M 2012 Hex-elastic
[43] Hill R 1952 Proc. Phys. Soc. London. A 65 349
[44] Voigt W 1928 Lehrbuch der Kristallphysik (Teubner: Leipzig)
[45] Reuss A and Angew Z 1929 Math. Mech. 9 49
[46] Mayer B, Anton H, Bott E, Methfessel M, Sticht J and Schmidt P C 2003 Intermetallics 11 23
[47] Chen Y M, Cheng W, Liao B and Zhang X 2013 Int. J. Mod. Phys. B 27 1350095
[48] Sun Z, Music D, Ahuja R and Schneider J M 2005 Phys. Rev. B 71 193402
[49] Vitos L, Korzhavyi P A and Johansson B 2003 Nat. Mater. 2 25
[50] Lincoln R C, Koliwad K M and Ghate P B 1967 Phys. Rev. 157 463
[51] Puttlitz K J, Stalter K A 2004 Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (New York: Marcel Dekker)
[52] Sundareswari M, Ramasubramanian S and Rajagopalan M 2010 State Commun. 150 2057
[53] Mio N, Zhou B J and Sun Z 2011 Comput. Mater. Sci. 50 1559
[54] Ren B, Lu D, Zhou R, Ji D, Hu M and Feng J 2018 Chin. Phys. B 27 107102
[55] Longke B, Deyi Q, Zhuangzhuang K and Yonghua D 2019 Solid State Sci. 98 106027
[56] Harrison W A 1989 Electronic Structure and Properties of Solids (New York: Dover)
[57] Deyi Q, Longke B, Zhuangzhuang K and Yonghua D 2019 Mater. Res. Express 6 116569
[58] Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater 33 93
[59] Zhuangzhuang K, Mingjun P, Yong S, Deyi Q and Longke B 2019 Phys. B: Condens. Matter 571 222
[60] Anderson O L 1963 J. Phys. Chem. Solids. 24 909
[61] Huang Z, Zhao Y, Hou H and Han P 2012 J. Phys. B 407 1075
[62] Wachter P, Filzmoser M, Rebizant 2001 Phys. B. 293 199
[63] Popoola A I 2013 PhD Dissertation (Johannesburg: University of Witwatersrand)
[64] Wooten F 1972 Optical Properties of Solids (New York: Academic Press)
[65] Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L and Yang X D 2010 Chin. Phys. B 19 077102
[66] Yao G, Chen Y, An X Y, Jiang Z Q, Cao L H, Wu W D and Zhao Y 2013 Chin. Phys. Lett. 30 067101
[67] Saad Ta, Mubarak A A, Saher S, Jamil M I and Gilani S M 2019 Chin. Phys. B 28 066101
[68] Ahuja R, Eriksson O, Johansson B, Auluck S and Wills J M 1996 Phys. Rev. B. 54 10419
[69] Sun J, Wang H T, He J L and Tian Y J 2005 Phys. Rev. B. 71 125132
[70] Okoye C M I 2003 J. Phys.: Condens. Matter. 15 5945
[71] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!