CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric |
Tao-Tao Que(阙陶陶)1, Ya-Wen Zhao(赵亚文)1, Liu-An Li(李柳暗)1, Liang He(何亮)2, Qiu-Ling Qiu(丘秋凌)1, Zhen-Xing Liu(刘振兴)1, Jin-Wei Zhang(张津玮)1, Jia Chen(陈佳)1, Zhi-Sheng Wu(吴志盛)1, Yang Liu(刘扬)1 |
1 School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; 2 School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract The effect of high overdrive voltage on the positive bias temperature instability (PBTI) trapping behavior is investigated for GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT) with LPCVD-SiNx gate dielectric. A higher overdrive voltage is more effective to accelerate the electrons trapping process, resulting in a unique trapping behavior, i.e., a larger threshold voltage shift with a weaker time dependence and a weaker temperature dependence. Combining the degradation of electrical parameters with the frequency-conductance measurements, the unique trapping behavior is ascribed to the defect energy profile inside the gate dielectric changing with stress time, new interface/border traps with a broad distribution above the channel Fermi level are introduced by high overdrive voltage.
|
Received: 02 December 2019
Revised: 06 January 2020
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
72.80.Sk
|
(Insulators)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
77.22.Jp
|
(Dielectric breakdown and space-charge effects)
|
|
Fund: Project supported by the National Key Research and Development Program, China (Grant No. 2017YFB0402800), the Key Research and Development Program of Guangdong Province, China (Grant No. 2019B010128002), the National Natural Science Foundation of China (Grant No. U1601210), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030312011). |
Corresponding Authors:
Yang Liu
E-mail: liuy69@mail.sysu.edu.cn
|
Cite this article:
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬) Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric 2020 Chin. Phys. B 29 037201
|
[1] |
Yang S, Tang Z, Wong K, Lin Y, Liu C, Lu Y, Huang S and Chen K 2013 IEEE Electron Dev. Lett. 34 1497
|
[2] |
Li L, Zhang J, Liu Y and Ao J 2016 Chin. Phys. B 25 038503
|
[3] |
Ota K, Endo K, Okamoto Y, Ando Y, Miyamoto H and Shimawaki H 2009 Proc. IEEE International Electron Devices Meeting (IEDM) 12 1
|
[4] |
Pariha N, Goel N, Mukhopadhyay S and Mahapatra S 2018 IEEE Trans. Electron Dev. 65 392
|
[5] |
Hua M, Liu M, Yang S, Liu S, Fu K, Dong Z, Cai Y and Chen K 2015 IEEE Trans. Electron Dev. 62 3215
|
[6] |
Takagi S, Yasuda N and Toriumi A 1999 IEEE Trans. Electron Dev. 46 335
|
[7] |
Lagger P, Steinschifter P, Reiner M, Stadtmüller M, Denifl G, Naumann A, Müller J, Wilde L, Sundqvist J, Pogany D and Ostermaier C 2014 Appl. Phys. Lett. 105 033512
|
[8] |
He J, Hua M, Zhang Z and Chen K 2018 IEEE Trans. Electron Dev. 65 3185
|
[9] |
Wu T, Franco J, Marcon D, Jaeger B, Bakeroot B, Stoffels S, Hove M, Groeseneken G and Decoutere S 2016 IEEE Trans. Electron Dev. 63 5
|
[10] |
Guo A and Alamo J 2017 IEEE Trans. Electron Dev. 64 2142
|
[11] |
Wu T, Franco J, Marcon D, Jaeger B, Bakeroot B, Stoffels S, Hove M, Groeseneken G and Decoutere S 2014 IEEE Trans. Electron Dev. 63 1853
|
[12] |
Cho M, Lee J, Aoulaiche M, Kaczer B, Roussel P, Kauerauf T, Groeseneken G, Degraeve R and Franco J 2012 IEEE Trans. Electron Dev.. 59 2042
|
[13] |
Franco J, Alian A, Kaczer B, Lin D, Ivanov T, Pourghaderi A, Martens K, Mols Y, Zhou D, Waldron N, Sioncke S, Kauerauf T, Collaert N, Thean A, Heyns M and Groeseneken G 2014 IEEE International Reliability Physics Symposium 6 A.2.1
|
[14] |
Islam A and Alam M 2010 IEEE International Reliability Physics Symposium 2 B.3.2
|
[15] |
Taur Y and Ning T 1998 Fundamentals of modern VLSI devices (Cambridge university press) pp. 82-89
|
[16] |
Acurio E, Crupi F, Magnone P, Trojman L, Meneghesso L and Iucolano F 2017 Solid-State Electron. 132 49
|
[17] |
Guo A and Alamo J 2015 IEEE International Reliability Physics Symposium 6 C.5.1
|
[18] |
Nicollian E and Brews J 1982 MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley) p. 78
|
[19] |
Lagger P, Steinschifter P, Reiner M, Stadtmüller M, Denifl G, Naumann A, Muller J, Wilde L, Sundqvist J, Pogany D and Ostermaier C 2014 Appl. Phys. Lett. 105 033512
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|