CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation |
Xin-Yu Liu(刘新宇)1,2, Ji-Long Hao(郝继龙)1,2, Nan-Nan You(尤楠楠)1,2, Yun Bai(白云)1,2, Yi-Dan Tang(汤益丹)1,2, Cheng-Yue Yang(杨成樾)1,2, Sheng-Kai Wang(王盛凯)1,2 |
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The microwave plasma oxidation under the relatively high pressure (6 kPa) region is introduced into the fabrication process of SiO2/4H-SiC stack. By controlling the oxidation pressure, species, and temperature, the record low density of interface traps (~ 4×1010 cm-2·eV-1@Ec - 0.2 eV) is demonstrated on SiO2/SiC stack formed by microwave plasma oxidation. And high quality SiO2 with very flat interface (0.27-nm root-mean-square roughness) is obtained. High performance SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) with peak field effect mobility of 44 cm-2·eV-1 is realized without additional treatment. These results show the potential of a high-pressure plasma oxidation step for improving the channel mobility in SiC MOSFETs.
|
Received: 11 December 2019
Revised: 07 January 2020
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
Fund: Project supported in part by the National Key Research and Development Program of China (Grant No. 2016YFB0100601), the National Natural Science Foundation of China (Grant Nos. 61674169 and 61974159), and the Support from a Grant-In-Aid from the Youth Innovation Promotion Association of the Chinese Academy of Sciences. |
Corresponding Authors:
Xin-Yu Liu, Sheng-Kai Wang
E-mail: xyliu@ime.ac.cn;wangshengkai@ime.ac.cn
|
Cite this article:
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯) High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation 2020 Chin. Phys. B 29 037301
|
[1] |
Siddiqui A, Elgabra H and Singh S 2016 IEEE Trans. Dev. Mater. Reliab. 16 419
|
[2] |
Hirai H and Kita K 2018 Appl. Phys. Lett. 113 172103
|
[3] |
Peng Z Y, Wang S K, Bai Y, Tang Y D, Chen X M, Li C Z, Liu K A and Liu X Y 2018 J. Appl. Phys. 123 135302
|
[4] |
Li H F, Dimitrijev S, Harrison H B and Sweatman D 1997 Appl. Phys. Lett. 70 2028
|
[5] |
Jamet P and Dimitrijev S 2001 Appl. Phys. Lett. 79 323
|
[6] |
Chakraborty S, Lai P T and Kwok P C K 2002 Microelectron. Reliab. 42 455
|
[7] |
Xu J P, Lai P T and Chan C L 2003 Solid-State Electron. 47 1397
|
[8] |
Kosugi R and Fukuda K 2004 Mater. Sci. Forum 457 1345
|
[9] |
Okamoto D, Yano H, Hirata K, Hatayama T and Fuyuki T 2010 IEEE Electron Dev. Lett. 31 710
|
[10] |
Chung G Y, Tin C C, Williams J R, McDonald K, Chanana R K, Weller R A, Pantelides S T, Feldman L C, Holland O W, Das M K and Palmour J W 2001 IEEE Electron Dev. Lett. 22 176
|
[11] |
Tilak V, Matocha K and Dunne G 2007 IEEE Trans. Electron Dev. 54 2823
|
[12] |
Noguchi M, Iwamatsu T, Amishiro H, Watanabe H, Kita K, Yamakawa S 2017 IEEE International Electron Devices Meeting (Iedm), 2-6 December, 2017, San Francisco, CA, USA p: 9.3.1-9.3.4
|
[13] |
Gölz A, Lucovsky G, Koh K, Wolfe D, Niimi H and Kurz H 1997 Microelectron. Eng. 36 73
|
[14] |
Kim D K, Jeong K S, Kang Y S, Kang H K, Cho S W, Kim S O, Suh D, Kim S and Cho M H 2016 Sci. Rep. 6 34945
|
[15] |
Kim D K and Cho M H 2017 Appl. Sci. Converg. Technol. 26 133
|
[16] |
Masataka S, Hisanori S, Tomonori N and Sachiko Y 2002 Jpn. J. Appl. Phys. 41 L233
|
[17] |
Satoh M, Shimada H, Nakamura T, Nagamoto N and Yanagihara S 2002 Mater. Sci. Forum 389 1105
|
[18] |
Hanafusa H, Ishimaru R and Higashi S 2017 Jpn. J. Appl. Phys. 56 040304
|
[19] |
Liu X Y, Hao J L, You N N, Bai Y and Wang S K 2019 AIP Adv. 9 125150
|
[20] |
Okamoto D, Yano H, Hatayama T and Fuyuki T 2010 Appl. Phys. Lett. 96 203508
|
[21] |
Nicollian E H, Brews J R and Nicollian E H 1982 MOS Physics Technology (Chichester: John Wiley and Sons) p. 212-221
|
[22] |
Dzioba S, Este G and Naguib H M 1982 J. Electrochem. Soc. 129 2537
|
[23] |
Watanabe H, Hosoi T, Kirino T, Kagei Y, Uenishi Y, Chanthaphan A, Yoshigoe A, Teraoka Y and Shimura T 2011 Appl. Phys. Lett. 99 021907
|
[24] |
Chung G Y, Williams J R, Isaacs-Smith T, Ren F, McDonald K and Feldman L C 2002 Appl. Phys. Lett. 81 4266
|
[25] |
Rozen J, Nagano M and Tsuchida H 2013 J. Mater. Res. 28 28
|
[26] |
Kobayashi T, Suda J and Kimoto T 2017 AIP Adv. 7 045008
|
[27] |
Sometani M, Nagai D, Katsu Y, Hosoi T, Shimura T, Takei M, Yonezawa Y and Watanabe H 2017 Jpn. J. Appl. Phys. 56 04cr04
|
[28] |
Jamet P, Dimitrijev S and Tanner P 2001 J. Appl. Phys. 90 5058
|
[29] |
Okamoto D, Sometani M, Harada S, Kosugi R, Yonezawa Y and Yano H 2014 IEEE Electron Dev. Lett. 35 1176
|
[30] |
Kikuchi R H and Kita K 2014 Appl. Phys. Lett. 105 032106
|
[31] |
Yang X Y, Lee B and Misra V 2016 IEEE Trans. Electron Dev. 63 2826
|
[32] |
Lundstrom M and Guo J 2006 Nanoscale transistors: device physics, modeling and simulation (New York: Springer Science and Business Media) pp. 39-80
|
[33] |
Roccaforte F, Fiorenza P, Greco G, Nigro R L, Giannazzo F, Iucolano F and Saggio M 2018 Microelectron Eng. 187 66
|
[34] |
Kimoto T, Niwa H, Kajil N, Kobayashi T, Zhao Y, Mori S and Aketa M 2017 IEEE International Electron Devices Meeting (Iedm), 2-6 December, 2017, San Francisco, CA, USA pp. 9.5.1-9.5.4
|
[35] |
Ohashi T, Nakabayashi Y and Iijima R 2018 IEEE Trans. Electron Dev. 65 2707
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|