Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037301    DOI: 10.1088/1674-1056/ab68c0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation

Xin-Yu Liu(刘新宇)1,2, Ji-Long Hao(郝继龙)1,2, Nan-Nan You(尤楠楠)1,2, Yun Bai(白云)1,2, Yi-Dan Tang(汤益丹)1,2, Cheng-Yue Yang(杨成樾)1,2, Sheng-Kai Wang(王盛凯)1,2
1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The microwave plasma oxidation under the relatively high pressure (6 kPa) region is introduced into the fabrication process of SiO2/4H-SiC stack. By controlling the oxidation pressure, species, and temperature, the record low density of interface traps (~ 4×1010 cm-2·eV-1@Ec - 0.2 eV) is demonstrated on SiO2/SiC stack formed by microwave plasma oxidation. And high quality SiO2 with very flat interface (0.27-nm root-mean-square roughness) is obtained. High performance SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) with peak field effect mobility of 44 cm-2·eV-1 is realized without additional treatment. These results show the potential of a high-pressure plasma oxidation step for improving the channel mobility in SiC MOSFETs.
Keywords:  SiC      plasma oxidation      interface traps      MOSFET  
Received:  11 December 2019      Revised:  07 January 2020      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
Fund: Project supported in part by the National Key Research and Development Program of China (Grant No. 2016YFB0100601), the National Natural Science Foundation of China (Grant Nos. 61674169 and 61974159), and the Support from a Grant-In-Aid from the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
Corresponding Authors:  Xin-Yu Liu, Sheng-Kai Wang     E-mail:  xyliu@ime.ac.cn;wangshengkai@ime.ac.cn

Cite this article: 

Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯) High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation 2020 Chin. Phys. B 29 037301

[1] Siddiqui A, Elgabra H and Singh S 2016 IEEE Trans. Dev. Mater. Reliab. 16 419
[2] Hirai H and Kita K 2018 Appl. Phys. Lett. 113 172103
[3] Peng Z Y, Wang S K, Bai Y, Tang Y D, Chen X M, Li C Z, Liu K A and Liu X Y 2018 J. Appl. Phys. 123 135302
[4] Li H F, Dimitrijev S, Harrison H B and Sweatman D 1997 Appl. Phys. Lett. 70 2028
[5] Jamet P and Dimitrijev S 2001 Appl. Phys. Lett. 79 323
[6] Chakraborty S, Lai P T and Kwok P C K 2002 Microelectron. Reliab. 42 455
[7] Xu J P, Lai P T and Chan C L 2003 Solid-State Electron. 47 1397
[8] Kosugi R and Fukuda K 2004 Mater. Sci. Forum 457 1345
[9] Okamoto D, Yano H, Hirata K, Hatayama T and Fuyuki T 2010 IEEE Electron Dev. Lett. 31 710
[10] Chung G Y, Tin C C, Williams J R, McDonald K, Chanana R K, Weller R A, Pantelides S T, Feldman L C, Holland O W, Das M K and Palmour J W 2001 IEEE Electron Dev. Lett. 22 176
[11] Tilak V, Matocha K and Dunne G 2007 IEEE Trans. Electron Dev. 54 2823
[12] Noguchi M, Iwamatsu T, Amishiro H, Watanabe H, Kita K, Yamakawa S 2017 IEEE International Electron Devices Meeting (Iedm), 2-6 December, 2017, San Francisco, CA, USA p: 9.3.1-9.3.4
[13] Gölz A, Lucovsky G, Koh K, Wolfe D, Niimi H and Kurz H 1997 Microelectron. Eng. 36 73
[14] Kim D K, Jeong K S, Kang Y S, Kang H K, Cho S W, Kim S O, Suh D, Kim S and Cho M H 2016 Sci. Rep. 6 34945
[15] Kim D K and Cho M H 2017 Appl. Sci. Converg. Technol. 26 133
[16] Masataka S, Hisanori S, Tomonori N and Sachiko Y 2002 Jpn. J. Appl. Phys. 41 L233
[17] Satoh M, Shimada H, Nakamura T, Nagamoto N and Yanagihara S 2002 Mater. Sci. Forum 389 1105
[18] Hanafusa H, Ishimaru R and Higashi S 2017 Jpn. J. Appl. Phys. 56 040304
[19] Liu X Y, Hao J L, You N N, Bai Y and Wang S K 2019 AIP Adv. 9 125150
[20] Okamoto D, Yano H, Hatayama T and Fuyuki T 2010 Appl. Phys. Lett. 96 203508
[21] Nicollian E H, Brews J R and Nicollian E H 1982 MOS Physics Technology (Chichester: John Wiley and Sons) p. 212-221
[22] Dzioba S, Este G and Naguib H M 1982 J. Electrochem. Soc. 129 2537
[23] Watanabe H, Hosoi T, Kirino T, Kagei Y, Uenishi Y, Chanthaphan A, Yoshigoe A, Teraoka Y and Shimura T 2011 Appl. Phys. Lett. 99 021907
[24] Chung G Y, Williams J R, Isaacs-Smith T, Ren F, McDonald K and Feldman L C 2002 Appl. Phys. Lett. 81 4266
[25] Rozen J, Nagano M and Tsuchida H 2013 J. Mater. Res. 28 28
[26] Kobayashi T, Suda J and Kimoto T 2017 AIP Adv. 7 045008
[27] Sometani M, Nagai D, Katsu Y, Hosoi T, Shimura T, Takei M, Yonezawa Y and Watanabe H 2017 Jpn. J. Appl. Phys. 56 04cr04
[28] Jamet P, Dimitrijev S and Tanner P 2001 J. Appl. Phys. 90 5058
[29] Okamoto D, Sometani M, Harada S, Kosugi R, Yonezawa Y and Yano H 2014 IEEE Electron Dev. Lett. 35 1176
[30] Kikuchi R H and Kita K 2014 Appl. Phys. Lett. 105 032106
[31] Yang X Y, Lee B and Misra V 2016 IEEE Trans. Electron Dev. 63 2826
[32] Lundstrom M and Guo J 2006 Nanoscale transistors: device physics, modeling and simulation (New York: Springer Science and Business Media) pp. 39-80
[33] Roccaforte F, Fiorenza P, Greco G, Nigro R L, Giannazzo F, Iucolano F and Saggio M 2018 Microelectron Eng. 187 66
[34] Kimoto T, Niwa H, Kajil N, Kobayashi T, Zhao Y, Mori S and Aketa M 2017 IEEE International Electron Devices Meeting (Iedm), 2-6 December, 2017, San Francisco, CA, USA pp. 9.5.1-9.5.4
[35] Ohashi T, Nakabayashi Y and Iijima R 2018 IEEE Trans. Electron Dev. 65 2707
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[12] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[13] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[14] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[15] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
No Suggested Reading articles found!