|
|
Hexagonal arrangement of phospholipids in bilayer membranes |
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智) |
Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract The phospholipid membrane plays a key role in myriad biological processes and phenomena, and the arrangement structure of membrane determines its function. However, the molecular arrangement structure of phospholipids in cell membranes is difficult to detect experimentally. On the basis of molecular dynamic simulations both in a non-destructive way and at native environment, we observed and confirmed that the phospholipids self-assemble to a hexagonal arrangement structure under physiological conditions. The underlying mechanism was revealed to be that there are hexagonal arrangement regions with a lower free energy around each lipid molecule. The findings potentially advance the understanding of biological functions of phospholipid bilayers.
|
Received: 11 December 2019
Revised: 20 January 2020
Accepted manuscript online:
|
PACS:
|
05.20.-y
|
(Classical statistical mechanics)
|
|
05.70.Np
|
(Interface and surface thermodynamics)
|
|
83.10.Rs
|
(Computer simulation of molecular and particle dynamics)
|
|
87.14.Cc
|
(Lipids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904231), the National Key R&D Program of China (Grant Nos. 2018YFE0205501 and 2018YFB1801500), and Shanghai Sailing Program, China (Grant No. 19YF1434100). |
Corresponding Authors:
Zhi Zhu
E-mail: zhuzhi@usst.edu.cn
|
Cite this article:
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智) Hexagonal arrangement of phospholipids in bilayer membranes 2020 Chin. Phys. B 29 030505
|
[1] |
Heimburg T and Jackson A D 2005 Proc. Natl. Acad. Sci. USA 102 9790
|
[2] |
Edidin M 2003 Nat. Rev. Mol. Cell. Bio. 4 414
|
[3] |
Langton M J, Scriven L M, Williams N H and Hunter C A 2017 J. Am. Chem. Soc. 139 15768
|
[4] |
Bhaskara R M, Linker S M, Vogele M, Kofinger J and Hummer G 2017 Acs Nano 11 1273
|
[5] |
Yang K and Ma Y Q 2010 Nat. Nanotechnol. 5 579
|
[6] |
Khuntawee W, Wolschann P, Rungrotmongkol T, Wong-ekkabut J and Hannongbua S 2015 J. Chem. Inf. Model. 55 1894
|
[7] |
Prausnitz M R, Mitragotri S and Langer R 2004 Nat. Rev. Drug Discov. 3 115
|
[8] |
Prausnitz M R and Langer R 2008 Nat. Biotechnol. 26 1261
|
[9] |
Suzuki Y, Nagai K H, Zinchenko A and Hamada T 2017 Langmuir 33 2671
|
[10] |
Chen E H and Olson E N 2005 Science 308 369
|
[11] |
Champion J A and Mitragotri S 2006 Proc. Natl. Acad. Sci. USA 103 4930
|
[12] |
Arandjelovic S and Ravichandran K S 2015 Nat. Immunol. 16 907
|
[13] |
Cheng Y L, Bushby R J, Evans S D, Knowles P F, Miles R E and Ogier S D 2001 Langmuir 17 1240
|
[14] |
Cady S D, Schmidt-Rohr K, Wang J, Soto C S, DeGrado W F and Hong M 2010 Nature 463 689
|
[15] |
Sharma M, Yi M G, Dong H, Qin H J, Peterson E, Busath D D, Zhou H X and Cross T A 2010 Science 330 509
|
[16] |
Stevens C F 1993 Cell 72 55
|
[17] |
Simons K and Toomre D 2000 Nat Rev Mol. Cell Bio. 1 31
|
[18] |
Simons K and Ikonen E 1997 Nature 387 569
|
[19] |
Liu J, Barry C E, 3rd, Besra G S and Nikaido H 1996 J. Biol. Chem. 271 29545
|
[20] |
Beattie M E, Veatch S L, Stottrup B L and Keller S L 2005 Biophys J. 89 1760
|
[21] |
Buten C, Kortekaas L and Ravoo B J 2019 Adv. Mater. 1904957
|
[22] |
Perez-Gonzalez C, Alert R, Blanch-Mercader C, Gomez-Gonzalez M, Kolodziej T, Bazellieres E, Casademunt J and Trepat X 2019 Nat. Phys. 15 79
|
[23] |
Su B, Tian Y and Jiang L 2016 J. Am. Chem. Soc. 138 1727
|
[24] |
Zhu Z, Guo H K, Jiang X K, Chen Y C, Song B, Zhu Y M and Zhuang S L 2018 J. Phys. Chem. Lett. 9 2346
|
[25] |
Tieleman D P, Marrink S J and Berendsen H J 1997 Biochim. Biophys. Acta 1331 235
|
[26] |
Pilgram G S, Vissers D C, van der Meulen H, Koerten H K, Pavel S, Lavrijsen S P and Bouwstra J A 2001 J. Invest. Dermatol. 117 710
|
[27] |
Hui S, Parsons D and Cowden M 1974 Proc. Natl. Acad. Sci. USA 71 5068
|
[28] |
Muscatello U, Alessandrini A, Valdré G, Vannini V and Valdré U 2000 Biochem. Biophys. Res. Commun. 270 448
|
[29] |
Jaksch S, Gutberlet T and Müller-Buschbaum P 2019 Curr. Opin. Colloid & Interface Sci. 42 73
|
[30] |
Yu X M, Qi C H and Wang C L 2018 Chin. Phys. B 27 060101
|
[31] |
Qin J Y, Geng Y Z, Lu G, Ji Q and Fang H P 2018 Chin. Phys. B 27 028704
|
[32] |
Fang G, Sheng N, Jin T, Xu Y S, Sun H, Yao J, Zhuang W and Fang H P 2018 Chin. Phys. B 27 030505
|
[33] |
Dou Q T, Zuo G H and Fang H P 2012 Chin. Phys. Lett. 29 068701
|
[34] |
Li Z C, Duan L L, Feng G Q and Zhang Q G 2015 Chin. Phys. Lett. 32 118701
|
[35] |
Zhao L, Tu Y S, Wang C L and Fang H P 2016 Chin. Phys. Lett. 33 038201
|
[36] |
Jiang Z L, Chen P R, Zhong W R, Ai B Q and Shao Z G 2018 Acta Phys. Sin. 67 226601 (in Chinese)
|
[37] |
Zhu Z, Chang C, Shu Y S and Song B 2020 J. Phys. Chem. Lett. 11 256
|
[38] |
Van der Ploeg P and Berendsen H J C 1982 J. Chem. Phys. 76 3271
|
[39] |
Tieleman D P, Leontiadou H, Mark A E and Marrink S J 2003 J. Am. Chem. Soc. 125 6382
|
[40] |
Tu Y S, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z R, Huang Q, Fan C H, Fang H P and Zhou R H 2013 Nat. Nanotechnol. 8 594
|
[41] |
Schlaich A, Kowalik B, Kanduc M, Schneck E and Netz R R 2015 Physica A 418 105
|
[42] |
Bilkova E, Pleskot R, Rissanen S, Sun S, Czogalla A, Cwiklik L, Rog T, Vattulainen I, Cremer P S, Jungwirth P and Coskun U 2017 J. Am. Chem. Soc. 139 4019
|
[43] |
MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D and Karplus M 1998 J. Phys. Chem. B 102 3586
|
[44] |
Uran S, Larsen A, Jacobsen P B and Skotland T 2001 J. Chromatogr B 758 265
|
[45] |
Ravula T, Ramadugu S K, Di Mauro G and Ramamoorthy A 2017 Angew. Chem. Int. Edit. 56 11466
|
[46] |
Feller S E and MacKerell A D 2000 J. Phys. Chem. B 104 7510
|
[47] |
Berendsen H, Grigera J and Straatsma T 1987 J. Phys. Chem. 91 6269
|
[48] |
Abraham M J, Murtola T, Schulz R, Pall S, Smith J C, Hess B and Lindahl E 2015 Software X 1 19
|
[49] |
Nose S 2002 Mol. Phys. 100 191
|
[50] |
Hoover W G 1985 Phys. Rev. A Gen. Phys. 31 1695
|
[51] |
Nose S and Klein M L 1983 Mol. Phys. 50 1055
|
[52] |
Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
|
[53] |
Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
|
[54] |
Dinner A R, Sali A, Smith L J, Dobson C M and Karplus M 2000 Trends Biochem. Sci. 25 331
|
[55] |
Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
|
[56] |
Qi W P, Song B, Lei X L, Wang C L and Fang H P 2011 Biochemistry 50 9628
|
[57] |
Kumar S, Boone K, Tuszynski J, Barclay P and Simon C 2016 Sci. Rep. 6 36508
|
[58] |
Kwon J, Kim M, Park H, Kang B M, Jo Y, Kim J H, James O, Yun S H, Kim S G, Suh M and Choi M 2017 Nat. Commun. 8 1832
|
[59] |
Song B and Shu Y S 2020 Nano Res. 13 38
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|