|
|
An Yb-fiber frequency comb phase-locked to microwave standard and optical reference |
Hui-Bo Wang(汪会波)1,2, Hai-Nian Han(韩海年)2,3, Zi-Yue Zhang(张子越)2,3, Xiao-Dong Shao(邵晓东)2,3, Jiang-Feng Zhu(朱江峰)1, Zhi-Yi Wei(魏志义)1,2,3 |
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We present a fully stabilized Yb-fiber frequency comb locked to a microwave standard and an optical reference separately. The carrier-envelope offset frequency is generated by a standard f-2f interferometer with 40 dB signal-to-noise ratio. The offset frequency and the repetition rate are stabilized simultaneously to the radio frequency reference for more than 30 hours, and the fractional Allan deviation of the comb is the same as the microwave standard of 10-12 at 1 s. Alternatively, the comb is locked to an ultra-stable optical reference at 972 nm using an intracavity electro-optic modulator, exhibiting a residual integrated phase noise of 458 mrad (1 Hz-10 MHz) and an in-loop tracking stability of 1.77×10-18 at 1 s, which is significantly raised by six orders comparing to the case locked to the microwave frequency standard.
|
Received: 06 December 2019
Revised: 26 December 2019
Accepted manuscript online:
|
PACS:
|
06.20.-f
|
(Metrology)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA1502040404 and XDB21010400) and the National Natural Science Foundation of China (Grant Nos. 91850209 and 11774234). |
Corresponding Authors:
Hai-Nian Han
E-mail: hnhan@iphy.ac.cn
|
Cite this article:
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义) An Yb-fiber frequency comb phase-locked to microwave standard and optical reference 2020 Chin. Phys. B 29 030601
|
[1] |
Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233
|
[2] |
Schliesser A, Picqué N and Hänsch T W 2012 Nat. Photon. 6 440
|
[3] |
Picqué N and Hänsch T W 2019 Nat. Photon. 13 146
|
[4] |
Kolachevsky N, Fischer M, Karshenboim S G and Hänsch T W 2004 Phys. Rev. Lett. 92 033003
|
[5] |
Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, LeCoq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
|
[6] |
Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L and Ye J 2018 Nat. Photon. 12 387
|
[7] |
Matos L, Kleppner D, Cuzuku O, Schibli T R, Kim J, Ippen E P and Kaertner F X 2004 Opt. Lett. 29 1683
|
[8] |
Pekarek S, Südmeyer T, Lecomte S, Kundermann S, Dudley J M and Keller U 2011 Opt. Express 19 16491
|
[9] |
Hundertmark H, Wandt D, Fallnich C, Haverkamp N and Telle H R 2004 Opt. Express 12 770
|
[10] |
DelHaye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
|
[11] |
Carlson D R, Hickstein D D, Zhang W, Metcalf A J, Quinlan F, Diddams S A and Papp S B 2018 Science 361 1358
|
[12] |
Kim J and Song Y 2016 Adv. Opt. Photon. 8 465
|
[13] |
Li Y H, Kuse N, Rolland A, Stepanenko Y, Ranzewicz C and Fermann M E 2017 Opt. Express 25 18017
|
[14] |
Luo D P, Liu Y, Gu C L, Wang C, Zhu Z W, Zhang W C, Deng Z J, Zhou L, Li W X and Zeng H P 2018 Appl. Phys. Lett. 112 061106
|
[15] |
Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E and Ye J 2008 Nat. Photon. 2 355
|
[16] |
Ruehl A, Marcinkevicius A, Fermann M E and Hartl I 2010 Opt. Lett. 35 3015
|
[17] |
Newbury N R and Swann W C 2007 Josa B 24 1756
|
[18] |
Pang L H, Han H N, Zhao Z B, Liu W J and Wei Z Y 2016 Opt. Express 24 28993
|
[19] |
Sinclair L C, Coddington I, Swann W C, Rieker G B, Hati A, Iwakuni K and Newbury N R 2014 Opt. Express 22 6996
|
[20] |
Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hulsing T, Hänsch T W and Holzwarth R 2016 Optica 3 1381
|
[21] |
Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E and Ye J 2011 Opt. Lett. 36 743
|
[22] |
Chen H W, Chang G, Xu S, Yang Z and Kärtner F X 2012 Opt. Lett. 37 3522
|
[23] |
Nugent-Glandorf L, Johnson T A, Kobayashi Y and Diddams S A 2011 Opt. Lett. 36 1578
|
[24] |
Hudson D D, Holman K W, Jones R J, Cundiff S T and Ye J 2005 Opt. Lett. 30 2948
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|