Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 086801    DOI: 10.1088/1674-1056/26/8/086801

Thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl molecules on Au (110)

Junhai Ren(任俊海)1, Deliang Bao(包德亮)1, Li Dong(董立)1, Lei Gao(高蕾)1, Rongting Wu(武荣庭)1, Linghao Yan(闫凌昊)1, Aiwei Wang(王爱伟)1, Jiahao Yan(严佳浩)1, Yeliang Wang(王业亮)1,2, Shixuan Du(杜世萱)1,2, Qing Huan(郇庆)1,2, Hongjun Gao(高鸿钧)1,2
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China

Here we report the thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl (DAT) molecules on Au (110), which are investigated by scanning tunneling microscopy (STM) combined with density functional theory (DFT) based calculations. With the deposition of monolayer DAT molecules on Au (110) and subsequent annealing at 100 ℃, all DAT molecules adsorb on a (1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200 ℃, STM images show three distinct domains, including DAT molecules on a (1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group (-2H-DAT) on a (1×5) reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups (-4H-DAT) on a (1×3) reconstructed surface through N-Au bonds. Furthermore, after annealing the sample to 350 ℃, STM image shows only one self-assembled structure with -4H-DAT molecules on a (1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a (1×5) reconstructed surface is lower than that on (1×3) one, which demonstrate the experimental results that the formation temperature of a (1×3) reconstructed surface is higher than that of a (1×5) one.

Keywords:  self-assembled structures      Au (110) surface      surface reconstruction      dehydrogenation  
Received:  15 May 2017      Revised:  25 May 2017      Accepted manuscript online: 
PACS:  68.35.B- (Structure of clean surfaces (and surface reconstruction)) (Polymers, organics)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
Corresponding Authors:  Shixuan Du, Qing Huan     E-mail:;
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Junhai Ren(任俊海), Deliang Bao(包德亮), Li Dong(董立), Lei Gao(高蕾), Rongting Wu(武荣庭), Linghao Yan(闫凌昊), Aiwei Wang(王爱伟), Jiahao Yan(严佳浩), Yeliang Wang(王业亮), Shixuan Du(杜世萱), Qing Huan(郇庆), Hongjun Gao(高鸿钧) Thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl molecules on Au (110) 2017 Chin. Phys. B 26 086801

[1] Shi Z L and Lin N 2009 J. Am. Chem. Soc. 131 5376
[2] Shi Z L and Lin N 2010 J. Am. Chem. Soc. 132 10756
[3] Bartels L 2010 Nat. Chem. 2 87
[4] Sun Q, Cai L L, Ma H H, Yuan C X and Xu W 2015 Chem. Commun. 51 14164
[5] Zhang H G, Xiao W D, Mao J H, Zhou H T, Li G, Zhang Y, Liu L W, Du S X and Gao H J 2012 J. Phys. Chem. C 116 11091
[6] Fortuna S, Gargiani P, Betti M G, Mariani C, Calzolari A, Modesti S and Fabris S 2012 J. Phys. Chem. C 116 6251
[7] Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X and Gao H J 2012 J. Phys. Chem. C 116 14052
[8] Chen Q, Bae S C and Granick S 2011 Nature 469 381
[9] Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D and Gao H J 2009 J. Am. Chem. Soc. 131 14136
[10] Wu R T, Yan L H, Zhang Y F, Ren J H, Bao D L, Zhang H G, Wang Y L, Du S X, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
[11] Shang J, Wang Y F, Chen M, Dai J X, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried J M and Wu K 2015 Nat. Chem. 7 389
[12] Liu J, Lin T, Shi Z L, Xia F, Dong L, Liu P N and Lin N 2011 J. Am. Chem. Soc. 133 18760
[13] Wang X Y, Zhao F P, Wang J and Yan Y B 2016 Acta Phys. Sin. 65 178105 (in Chinese)
[14] Peng Y, Luo X X, Fu Y and Xing M M 2013 Acta Phys. Sin. 62 208105 (in Chinese)
[15] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[16] Furukawa H, Cordova K E, O'Keeffe M and Yaghi O M 2013 Science 341 1230444
[17] Kurmoo M 2009 Chem. Soc. Rev. 38 1353
[18] Itabashi A, Fukushima M and Murata H 2008 Jpn. J. Appl. Phys. 47 1271
[19] Nishimura T, Sasahara A, Murata H, Arai T and Tomitori M 2014 J. Phys. Chem. C 118 25104
[20] Nishimura T, Itabashi A, Sasahara A, Murata H, Arai T and Tomitori M 2010 J. Phys. Chem. C 114 11109
[21] Betti M G, Gargiani P, Mariani C, Turchini S, Zema N, Fortuna S, Calzolari A and Fabris S 2012 J. Phys. Chem. C 116 8657
[22] Zhong D Y, Franke J H, Podiyanachari S K, Blomker T, Zhang H M, Kehr G, Erker G, Fuchs H and Chi L F 2011 Science 334 213
[23] Walen H, Liu D J, Oh J, Yang H J, Kim Y and Thiel P A 2015 J. Phys. Chem. C 119 21000
[24] Rauls E, Schmidt W G, Pertram T and Wandelt K 2012 Surf. Sci. 606 1120
[25] Guaino P, Carty D, Hughes G, McDonald O and Cafolla A A 2004 Appl. Phys. Lett. 85 2777
[26] Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G and Zhang Z Y 2016 Phys. Rev. Lett. 116 026802
[27] Floreano L, Cossaro A, Cvetko D, Bavdek G and Morgante A 2006 J. Phys. Chem. B 110 4908
[28] Vanderbilt D 1990 Phys. Rev. B 41 7892
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[32] Wu X, Vargas M C, Nayak S, Lotrich V and Scoles G 2001 J. Chem. Phys. 115 8748
[33] Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106
[34] Knor M, Gao H Y, Amirjalayer S, Studer A, Gao H J, Du S X and Fuchs H 2015 Chem. Commun. 51 10854
[1] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[2] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[3] Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy
Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟). Chin. Phys. B, 2018, 27(8): 088103.
[4] Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
Rongri Tan(谈荣日), Huixuan Liu(刘慧宣), Damao Xun(寻大毛), Wenjun Zong(宗文军). Chin. Phys. B, 2018, 27(2): 027102.
[5] Damage mechanism of hydroxyl radicals toward adenine–thymine base pair
Tan Rong-Ri (谈荣日), Wang Dong-Qi (王东琪), Zhang Feng-Shou (张丰收). Chin. Phys. B, 2014, 23(2): 027103.
[6] A density-functional theory investigation on disorption of O2 on Sn(111) and its comparison with initial oxidation on the X(111) (X=Si, Ge, Sn, Pb) surfaces
Hu Zi-Yu (胡自玉), Wan Ping-Yu (万平玉), Hou Zhi-Ling (侯志灵), Shao Xiao-Hong (邵晓红). Chin. Phys. B, 2012, 21(12): 126803.
[7] Surface reconstruction on stishovite SiO2, HfO2 and rutile TiO2 (001)
Tang Fu-Ling(汤富领), Yue Rui(岳瑞), and Lu Wen-Jiang(路文江). Chin. Phys. B, 2011, 20(2): 026801.
[8] Scanning tunneling microscopy study of surface reconstruction induced by N adsorption on Cu (100) surface
Dou Wei-Dong(窦卫东), Zhang Han-Jie(张寒洁), and Bao Shi-Ning(鲍世宁). Chin. Phys. B, 2010, 19(2): 026803.
Xue Qi-zhen (薛其贞), Xue Qi-kun (薛其坤), S. Kuwano, K. Nakayama, T. Sakurai. Chin. Phys. B, 2001, 10(13): 157-162.
No Suggested Reading articles found!