Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038503    DOI: 10.1088/1674-1056/ab6960
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars

Jia-Fei Yao(姚佳飞)1,2, Yu-Feng Guo(郭宇锋)1,2, Zhen-Yu Zhang(张振宇)1,2, Ke-Meng Yang(杨可萌)1,2, Mao-Lin Zhang(张茂林)1,2, Tian Xia(夏天)3
1 College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing 210023, China;
3 School of Electrical Engineering, University of Vermont, Burlington, VT 05405, USA
Abstract  This paper presents a new silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor transistor (LDMOST) device with alternated high-k dielectric and step doped silicon pillars (HKSD device). Due to the modulation of step doping technology and high-k dielectric on the electric field and doped profile of each zone, the HKSD device shows a greater performance. The analytical models of the potential, electric field, optimal breakdown voltage, and optimal doped profile are derived. The analytical results and the simulated results are basically consistent, which confirms the proposed model suitable for the HKSD device. The potential and electric field modulation mechanism are investigated based on the simulation and analytical models. Furthermore, the influence of the parameters on the breakdown voltage (BV) and specific on-resistance (Ron,sp) are obtained. The results indicate that the HKSD device has a higher BV and lower Ron,sp compared to the SD device and HK device.
Keywords:  high-k dielectric      step doped silicon pillar      model      breakdown voltage  
Received:  17 October 2019      Revised:  16 December 2019      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704084 and 61874059).
Corresponding Authors:  Yu-Feng Guo     E-mail:  yfguo@njupt.edu.cn

Cite this article: 

Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天) Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars 2020 Chin. Phys. B 29 038503

[1] Li Q, Zhang Z Y, Li H O, Sun T Y, Chen Y H and Zuo Y 2019 Chin. Phys. B 28 037201
[2] Fan J, Sun S M, Wang H Z and Zou Y G 2018 Chin. Phys. Lett. 35 038501
[3] Li W, Zheng Z, Wang Z G, Li P, Fu X J, He Z R, Liu Fan, Yang F, Xiang F and Liu C L 2017 Chin. Phys. B 26 017701
[4] Zhang W T, Li L, Qiao M, Zhan Z Y, Cheng S K, Zhang S, He B Y, Luo X R, Li Z J and Zhang B 2019 IEEE Trans. Electron. Devices 40 1151
[5] Liang L X, Huang H M, Chen X B 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), August 3-5, 2016, Hong Kong, China, p. 120
[6] Sunkavalli R, Tamba A and Baliga B J 1995 Proc. IEEE International SOI Conference October 3-5, 1995, Tucson, AZ, USA, p. 139
[7] Guo Y F, Li Z J, Zhang B 2006 Microelectron. J. 37 861
[8] Chen W J, Zhang B and Li Z J 2007 IEEE International Conference on Communications, Circuits and Systems, July 11-13, 2007, Kokura, Japan, p. 1256
[9] Hu Y, Wang H, Du C X, Ma M M, Chan M S, He J and Wang G F 2016 IEEE Trans. Electron. Devices 63 1969
[10] Duan B X, Cao Z, Yuan X N, Yuan S and Yang Y T 2015 IEEE Electron Device Lett. 36 47
[11] Yao J F, Guo Y F, Xia T, Zhang J and Lin H 2016 Superlattices Microstruct. 96 95
[12] Wang X W, Luo X R, Yin C, Fan Y H, Zhou K, Fan Y, Cai J Y, Luo Y C, Zhang B and Li Z J 2013 Acta Phys. Sin. 62 237301 (in Chinese)
[13] Chen X B and Huang M M 2012 IEEE Trans. Electron. Devices 59 2430
[14] Yao J F, Guo Y F, Yang K M, Du L, Zhang J and Xia T 2019 IEEE Trans. Electron. Devices 66 3055
[15] Chen W J, Zhang B and Li Z J 2007 Semicond. Sci. Technol. 22 464
[16] Guo Y F, Zhang B, Li Z J 2006 IEEE International Conference on Communications, Circuits and Systems, June 25-28, 2006, Guilin, China
[17] Lin C P, Tsui B Y, Yang M J, Huang R H and Chien C H 2006 IEEE Electron Device Lett. 27 360
[18] Park J H, Jang G S, Kim H Y, Lee S K and Joo S K 2015 IEEE Electron. Device Lett. 36 920
[19] Campbell S A, Gilmer D C, Wang X C, Hsieh M T, Kim H S, Gladfelter W L, Yan J H 1997 IEEE Trans. Electron. Devices 44 104
[20] Zhu Z Y, Xu J, Zhao H L and Luo Z J 2015 IEEE Trans. Electron. Devices 62 2352
[21] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer Science & Business Media)
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[5] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[6] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[7] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[8] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[9] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[10] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[11] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[12] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[13] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[14] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[15] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
No Suggested Reading articles found!