Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120302    DOI: 10.1088/1674-1056/ab4e83
GENERAL Prev   Next  

Quantum discord of two-qutrit system under quantum-jump-based feedback control

Chang Wang(王畅), Mao-Fa Fang(方卯发)
Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spontaneous emission, quantum feedback parameters, classical driving, initial state, and detection efficiency all affect the evolution of quantum discord in a two-qutrit system. We find that under the condition of designing proper quantum-jump-based feedback parameters, quantum discord can be protected and prepared. In the case where two qutrits are independently coupled to their own environments, classical driving, spontaneous emission, and low detection efficiency have negative effect on the protection of quantum discord. For different initial states, it is found that the evolution of quantum discord under the control of appropriate parameters is similar. In the case where two qutrits are simultaneously coupled to the same environment, the classical driving plays a positive role in the generation of quantum discord, but spontaneous emission and low detection efficiency have negative impact on the generation of quantum discord. Most importantly, we find that the steady discord depends on feedback parameters, classical driving, and detection efficiency, but not on the initial state.
Keywords:  qutrit      quantum-jump-based feedback      quantum discord  
Received:  10 August 2019      Revised:  21 September 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374096).
Corresponding Authors:  Mao-Fa Fang     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Chang Wang(王畅), Mao-Fa Fang(方卯发) Quantum discord of two-qutrit system under quantum-jump-based feedback control 2019 Chin. Phys. B 28 120302

[33] Chen L, Wang H F and Zhang S 2014 Chin. Phys. B 23 030301
[1] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[34] Sun H Y, Shu P L, Li C and Yi X X 2009 Phys. Rev. A 79 022119
[2] Vidal G 2000 J. Mod. Opt. 47 355
[35] Wang L C, Huang X L and Yi X X 2008 Phys. Rev. A 78 052112
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[36] Shao X Q, Zheng T Y and Zhang S 2012 Phys. Rev. A 85 042308
[4] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[37] Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
[5] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[38] Chen L, Wang H F and Zhang S 2013 J. Opt. Soc. Am. B 30 475
[6] Vedral V 2003 Phys. Rev. Lett. 90 050401
[39] Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
[7] Shi W N, Wang D, Sun W Y, Ming F, Huang A J and Ye L 2018 Laser Phys. Lett. 15 075202
[40] Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303
[8] Chen M N, Sun W Y, Huang A J, Ming F, Wang D and Ye L 2018 Laser Phys. Lett. 15 015207
[41] Ji Y Q, Qin M, Shao X Q and Yi X X 2017 Phys. Rev. A 96 043815
[9] Ming F, Wang D and Liu Y 2019 Ann. Phys. 531 1900014
[42] Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317
[10] Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S and Ye L 2018 Ann. Phys. 530 1800080
[43] Huang Z M 2018 Int. J. Theor. Phys. 57 3473
[11] Li H Z, Han R S, Zhang Y Q and Chen L 2015 Chin. Phys. Lett. 32 100303
[44] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
[12] Faizi E and Eftekhari H 2015 Chin. Phys. Lett. 32 100303
[45] Metz J and Beige A 2007 Phys. Rev. A 76 022331
[13] Zheng Y D, Mao Z and Zhou B 2018 Chin. Phys. B 27 090306
[46] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
[14] Zad H A 2016 Chin. Phys. Lett. 33 090302
[47] Pu H, Cai T, Bigelow N P, Grove T T and Gould P L 1995 Opt. Commun. 118 261
[15] Guo K T, Xiang S H, Xu H Y and Li X H 2014 Quantum Inf. Process. 13 1511
[16] Maleki Y 2016 Quantum Inf. Process. 15 4537
[17] Lopez C E and Lastra F 2017 Phys. Rev. A 96 062112
[18] Wu Q C and Ji X 2013 Quantum Inf. Process. 12 3167
[19] Dakic B, Lipp Y O, Ma X S, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č and Walther P 2012 Nat. Phys. 8 666
[20] Caves C M and Milburn G J 2000 Opt. Commun. 179 439
[21] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
[22] Wiseman H M 1994 Phys. Rev. A 49 2133
[23] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[24] Katz G, Ratner M A and Kosloff R 2007 Phys. Rev. Lett. 98 203006
[25] Ganesan N and Tarn T J 2007 Phys. Rev. A 75 032323
[26] Zhang J, Li C, Wu R, Tarn T and Liu X 2005 J. Phys. A: Math. Gen. 38 6587
[27] Yu M and Fang M F 2017 Int. J. Theor. Phys. 56 1937
[28] Wang J, Wiseman H M and Milburn G J 2005 Phys. Rev. A 71 042309
[29] Carvalho A R R and Hope J J 2007 Phys. Rev. A 76 010301(R)
[30] Li J G, Zou J, Shao B and Cai J F 2008 Phys. Rev. A 77 012339
[31] Carvalho A R R, Reid A J S and Hope J J 2008 Phys. Rev. A 78 012334
[32] Chen Y, Zou J, Li J G and Shao B 2010 Acta Phys. Sin. 59 8365 (in Chinese)
[33] Chen L, Wang H F and Zhang S 2014 Chin. Phys. B 23 030301
[34] Sun H Y, Shu P L, Li C and Yi X X 2009 Phys. Rev. A 79 022119
[35] Wang L C, Huang X L and Yi X X 2008 Phys. Rev. A 78 052112
[36] Shao X Q, Zheng T Y and Zhang S 2012 Phys. Rev. A 85 042308
[37] Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
[38] Chen L, Wang H F and Zhang S 2013 J. Opt. Soc. Am. B 30 475
[39] Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
[40] Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303
[41] Ji Y Q, Qin M, Shao X Q and Yi X X 2017 Phys. Rev. A 96 043815
[42] Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317
[43] Huang Z M 2018 Int. J. Theor. Phys. 57 3473
[44] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
[45] Metz J and Beige A 2007 Phys. Rev. A 76 022331
[46] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
[47] Pu H, Cai T, Bigelow N P, Grove T T and Gould P L 1995 Opt. Commun. 118 261
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[4] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[5] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[6] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[7] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[8] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[9] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[10] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[11] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[12] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[13] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[14] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[15] Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis
Chen Li-Bing (陈立冰), Lu Hong (路洪). Chin. Phys. B, 2015, 24(7): 070307.
No Suggested Reading articles found!