|
|
Quantum discord of two-qutrit system under quantum-jump-based feedback control |
Chang Wang(王畅), Mao-Fa Fang(方卯发) |
Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China |
|
|
Abstract This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spontaneous emission, quantum feedback parameters, classical driving, initial state, and detection efficiency all affect the evolution of quantum discord in a two-qutrit system. We find that under the condition of designing proper quantum-jump-based feedback parameters, quantum discord can be protected and prepared. In the case where two qutrits are independently coupled to their own environments, classical driving, spontaneous emission, and low detection efficiency have negative effect on the protection of quantum discord. For different initial states, it is found that the evolution of quantum discord under the control of appropriate parameters is similar. In the case where two qutrits are simultaneously coupled to the same environment, the classical driving plays a positive role in the generation of quantum discord, but spontaneous emission and low detection efficiency have negative impact on the generation of quantum discord. Most importantly, we find that the steady discord depends on feedback parameters, classical driving, and detection efficiency, but not on the initial state.
|
Received: 10 August 2019
Revised: 21 September 2019
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374096). |
Corresponding Authors:
Mao-Fa Fang
E-mail: mffang@hunnu.edu.cn
|
Cite this article:
Chang Wang(王畅), Mao-Fa Fang(方卯发) Quantum discord of two-qutrit system under quantum-jump-based feedback control 2019 Chin. Phys. B 28 120302
|
[33] |
Chen L, Wang H F and Zhang S 2014 Chin. Phys. B 23 030301
|
[1] |
Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[34] |
Sun H Y, Shu P L, Li C and Yi X X 2009 Phys. Rev. A 79 022119
|
[2] |
Vidal G 2000 J. Mod. Opt. 47 355
|
[35] |
Wang L C, Huang X L and Yi X X 2008 Phys. Rev. A 78 052112
|
[3] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[36] |
Shao X Q, Zheng T Y and Zhang S 2012 Phys. Rev. A 85 042308
|
[4] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[37] |
Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
|
[5] |
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
|
[38] |
Chen L, Wang H F and Zhang S 2013 J. Opt. Soc. Am. B 30 475
|
[6] |
Vedral V 2003 Phys. Rev. Lett. 90 050401
|
[39] |
Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
|
[7] |
Shi W N, Wang D, Sun W Y, Ming F, Huang A J and Ye L 2018 Laser Phys. Lett. 15 075202
|
[40] |
Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303
|
[8] |
Chen M N, Sun W Y, Huang A J, Ming F, Wang D and Ye L 2018 Laser Phys. Lett. 15 015207
|
[41] |
Ji Y Q, Qin M, Shao X Q and Yi X X 2017 Phys. Rev. A 96 043815
|
[9] |
Ming F, Wang D and Liu Y 2019 Ann. Phys. 531 1900014
|
[42] |
Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317
|
[10] |
Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S and Ye L 2018 Ann. Phys. 530 1800080
|
[43] |
Huang Z M 2018 Int. J. Theor. Phys. 57 3473
|
[11] |
Li H Z, Han R S, Zhang Y Q and Chen L 2015 Chin. Phys. Lett. 32 100303
|
[44] |
Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
|
[12] |
Faizi E and Eftekhari H 2015 Chin. Phys. Lett. 32 100303
|
[45] |
Metz J and Beige A 2007 Phys. Rev. A 76 022331
|
[13] |
Zheng Y D, Mao Z and Zhou B 2018 Chin. Phys. B 27 090306
|
[46] |
Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
|
[14] |
Zad H A 2016 Chin. Phys. Lett. 33 090302
|
[47] |
Pu H, Cai T, Bigelow N P, Grove T T and Gould P L 1995 Opt. Commun. 118 261
|
[15] |
Guo K T, Xiang S H, Xu H Y and Li X H 2014 Quantum Inf. Process. 13 1511
|
[16] |
Maleki Y 2016 Quantum Inf. Process. 15 4537
|
[17] |
Lopez C E and Lastra F 2017 Phys. Rev. A 96 062112
|
[18] |
Wu Q C and Ji X 2013 Quantum Inf. Process. 12 3167
|
[19] |
Dakic B, Lipp Y O, Ma X S, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner Č and Walther P 2012 Nat. Phys. 8 666
|
[20] |
Caves C M and Milburn G J 2000 Opt. Commun. 179 439
|
[21] |
Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
|
[22] |
Wiseman H M 1994 Phys. Rev. A 49 2133
|
[23] |
Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
|
[24] |
Katz G, Ratner M A and Kosloff R 2007 Phys. Rev. Lett. 98 203006
|
[25] |
Ganesan N and Tarn T J 2007 Phys. Rev. A 75 032323
|
[26] |
Zhang J, Li C, Wu R, Tarn T and Liu X 2005 J. Phys. A: Math. Gen. 38 6587
|
[27] |
Yu M and Fang M F 2017 Int. J. Theor. Phys. 56 1937
|
[28] |
Wang J, Wiseman H M and Milburn G J 2005 Phys. Rev. A 71 042309
|
[29] |
Carvalho A R R and Hope J J 2007 Phys. Rev. A 76 010301(R)
|
[30] |
Li J G, Zou J, Shao B and Cai J F 2008 Phys. Rev. A 77 012339
|
[31] |
Carvalho A R R, Reid A J S and Hope J J 2008 Phys. Rev. A 78 012334
|
[32] |
Chen Y, Zou J, Li J G and Shao B 2010 Acta Phys. Sin. 59 8365 (in Chinese)
|
[33] |
Chen L, Wang H F and Zhang S 2014 Chin. Phys. B 23 030301
|
[34] |
Sun H Y, Shu P L, Li C and Yi X X 2009 Phys. Rev. A 79 022119
|
[35] |
Wang L C, Huang X L and Yi X X 2008 Phys. Rev. A 78 052112
|
[36] |
Shao X Q, Zheng T Y and Zhang S 2012 Phys. Rev. A 85 042308
|
[37] |
Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
|
[38] |
Chen L, Wang H F and Zhang S 2013 J. Opt. Soc. Am. B 30 475
|
[39] |
Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
|
[40] |
Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303
|
[41] |
Ji Y Q, Qin M, Shao X Q and Yi X X 2017 Phys. Rev. A 96 043815
|
[42] |
Shao X Q, Wu J H and Yi X X 2017 Phys. Rev. A 95 022317
|
[43] |
Huang Z M 2018 Int. J. Theor. Phys. 57 3473
|
[44] |
Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
|
[45] |
Metz J and Beige A 2007 Phys. Rev. A 76 022331
|
[46] |
Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
|
[47] |
Pu H, Cai T, Bigelow N P, Grove T T and Gould P L 1995 Opt. Commun. 118 261
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|