Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118402    DOI: 10.1088/1674-1056/ab4d3d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical and experimental study on frequency pushing effect of magnetron

Kang Li(李慷)1,2, Yi Zhang(张益)1,2, Hua-Cheng Zhu(朱铧丞)1,2, Ka-Ma Huang(黄卡玛)1,2, Yang Yang(杨阳)1,2
1 School of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China;
2 Key Laboratory of Wireless Power Transmission of Ministry of Education, Chengdu 610064, China
Abstract  The applications of magnetrons are greatly limited because of the poor output spectrum of the free-running magnetron. Currently, one of the best ways to solve this problem is injection locking. However, the injection locking theory which is widely used nowadays is based on the simplified oscillator, which does not include the frequency pushing effect of the magnetron. In this paper, the theory of injection locking magnetrons with frequency pushing effect is systematically studied. Analytical analysis shows that the locking bandwidth turns larger with the consideration of the pushing parameter (α), and the increase of locking bandwidth is expanded with α increasing. Experimental results show that the locking bandwidth is expanded by 0.3 MHz, 1 MHz, and 1.6 MHz compared with the locking bandwidth from the conventional locking theory under an injection ratio (ρ) of 0.05, 0.075, and 0.1, respectively. This research provides a more accurate prediction of the properties of the injection-locked magnetron.
Keywords:  magnetron      injection locking      pushing effect  
Received:  11 July 2019      Revised:  17 September 2019      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
  84.30.Vn (Filters)  
Fund: Project supported by the Sichuan Science and Technology Program, China (Grant No. 2019YFG0419) and the National Natural Science Foundation of China (Grant No. 61601312).
Corresponding Authors:  Yang Yang     E-mail:  yyang@scu.edu.cn

Cite this article: 

Kang Li(李慷), Yi Zhang(张益), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳) Theoretical and experimental study on frequency pushing effect of magnetron 2019 Chin. Phys. B 28 118402

[1] Stuchly M A and Stuchly S S 1983 IEE Proc. A 130 467
[2] Zhang Y, Agrawal D K, Cheng J and Tania Slaweck 2018 IEEE Trans. Microw. Theory Tech. 66 2107
[3] Osepchuk J M 1984 IEEE Trans. Micrrow. Theory Techn. 32 1200
[4] Kamo M, Sato Y, Matsumoto S and Setaka N 1983 J. Cryst. Growth 62 642
[5] KaKati H and Borah S M 2015 Chin. Phys. B 24 125201
[6] Zhang Y, Huang K, Agrawal D K, Tania Slawecki, Huacheng Zhu and Yang Yang 2017 IEEE Trans. Electron. Dev. 64 4272
[7] Yuan P, Zhang Y, Ye W, Zhu H, Huang K and Yang Y 2016 Chin. Phys. B 25 078402
[8] Brewer M A, Brown I G, Dickinson M R, Galvin J E, MacGill R A and Salvadori M C 1992 Rev. Sci. Instrum. 63 3389
[9] Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L and Fan Z 2010 Electrochim. Acta 55 6973
[10] Small J G (U.S. Patent) 7 257 327 [2007-8-14]
[11] Ye W J, Zhang Y, Yuan P, Zhu H C, Huang K M and Yang Y 2016 Chin. Phys. B 25 128402
[12] Zhang Y, Yuan P, Ye W, Zhu H, Yang Y and Huang K 2016 Int. J. Appl. Electromagn. Mech. 51 71
[13] Yue S, Gao D P, Zhang Z C and Wang W L 2016 Chin. Phys. B 25 118403
[14] Zhang Y, Ye W J, Yuan P, Zhu H C, Yang Y and Huang K M 2016 Chin. Phys. B 25 048402
[15] Adler R 1946 Proc. IRE 34 351
[16] Pengvanich P, Neculaes V B, Lau Y Y, Gilgenbach R M, Jones M C, White W M and Kowalczyk R D 2005 J. Appl. Phys. 98 114903
[17] Welch H W 1953 Proc. IRE 41 1631
[18] Chen S C 1990 IEEE Trans. Plasma Sci. 18 570
[19] Slater J C 1947 Tech. Rep. 35 1
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[4] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[5] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[6] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[7] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[8] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[9] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[10] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[11] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[12] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[13] Power-combining based on master—slave injection-locking magnetron
Ping Yuan(袁萍), Yi Zhang(张益), Wenjun Ye(叶文军), Huacheng Zhu(朱铧丞), Kama Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(7): 078402.
[14] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[15] Analysis and experiments of self-injection magnetron
Yi Zhang(张益), Wen-Jun Ye(叶文军), Ping Yuan(袁萍), Huan-Cheng Zhu(朱铧丞), Yang Yang(杨阳), Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2016, 25(4): 048402.
No Suggested Reading articles found!