Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 106104    DOI: 10.1088/1674-1056/24/10/106104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

New crystal structure and physical properties of TcB from first-principles calculations

Zhang Gang-Tai (张刚台)a b, Bai Ting-Ting (白婷婷)c, Yan Hai-Yan (闫海燕)d, Zhao Ya-Ru (赵亚儒)a
a College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China;
b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China;
c College of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China;
d College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
Abstract  By combining first-principles calculations with the particle swarm optimization algorithm, we predicted a hexagonal P3m1 structure for TcB, which is energetically more favorable than the previously reported WC-type and Cmcm structures. The new phase is mechanically and dynamically stable, as confirmed by its phonon and elastic constants calculations. The calculated mechanical properties show that it is an ultra-incompressible and hard material. Meanwhile, the elastic anisotropy is investigated by the shear anisotropic factors and ratio of the directional bulk modulus. Density of states analysis reveals that the strong covalent bonding between Tc and B atoms plays a leading role in forming a hard material. Additionally, the compressibility, bulk modulus, Debye temperature, Grüneisen parameter, specific heat, and thermal expansion coefficient of TcB are also successfully obtained by using the quasi-harmonic Debye model.
Keywords:  TcB      structure prediction      ultra-incompressible material      thermodynamic properities  
Received:  18 March 2015      Revised:  24 May 2015      Accepted manuscript online: 
PACS:  61.66.Fn (Inorganic compounds)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  62.20.de (Elastic moduli)  
Fund: Project supported by the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK11061) and the Natural Science Foundation of the Education Committee of Shaanxi Province, China (Grant Nos. 2013JK0637, 2013JK0638, and 2014JK1044).
Corresponding Authors:  Zhang Gang-Tai, Yan Hai-Yan     E-mail:  gtzhang79@163.com;hyyan1102@163.com

Cite this article: 

Zhang Gang-Tai (张刚台), Bai Ting-Ting (白婷婷), Yan Hai-Yan (闫海燕), Zhao Ya-Ru (赵亚儒) New crystal structure and physical properties of TcB from first-principles calculations 2015 Chin. Phys. B 24 106104

[1] Occelli F, Farber D L and Toullec R L 2003 Nat. Mater. 2 151
[2] Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115
[3] He D W, Zhao Y S, Daemen L, Qian J, Shen T D and Zerda T W 2002 Appl. Phys. Lett. 81 643
[4] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[5] Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[6] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and R B Kaner 2005 J. Am. Chem. Soc. 127 7264
[7] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and R B Kaner 2007 Science 316 436
[8] Zhang M G, Yan H Y, Zhang G T and Wang H 2012 Chin. Phys. B 21 076103
[9] Zhao W J, Xu H B and Wang Y X 2010 Chin. Phys. B 19 016201
[10] Liang Y C, Guo W L and Fang Z 2007 Acta Phys. Sin. 56 4847 (in Chinese)
[11] Gou H Y, Hou L, Zhang J W, Li H, Sun G F and Gao F M 2006 Appl. Phys. Lett. 88 221904
[12] Chen Z Y, Xiang H J, Yang J L, Hou J G and Zhu Q S 2006 Phys. Rev. B 74 012102
[13] Yang J, Sun H and Chen C 2008 J. Am. Chem. Soc. 130 7200
[14] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H K 2006 Phys. Rev. Lett. 96 155501
[15] Kempter C P and Nadler M R 1960 J. Chem. Phys. 33 1580
[16] Guo X J, Xu B, He J L, Yu D L, Liu Z Y and Tian Y J 2008 Appl. Phys. Lett. 93 041904
[17] Liang Y C, Zhao J Z and Zhang B 2008 Solid State Commun. 146 450
[18] Zhang M G, Yan H Y, Zhang G T and Wang H 2012 J. Phys. Chem. C 116 4293
[19] Wang Y X 2007 Appl. Phys. Lett. 91 101904
[20] Liang Y C, Li C, Guo W L and Zhang W Q 2009 Phys. Rev. B 79 024111
[21] Aydin S and Simsek M 2009 Phys, Rev. B 80 134107
[22] Deligoz E, Colakoglu K, Ozisik H B and Ciftci Y O 2012 Solid State Sci. 14 794
[23] Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P, Huang X F 2013 J. Phys. Chem. C 117 10643
[24] Wu J H and Yang G 2014 Comp. Mater. Sci. 82 86
[25] Li J F, Wang X L, Liu K, Sun Y Y, Chen L and Yang H G 2010 Physica B 405 4659
[26] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[27] Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[28] Zhu L, Wang H, Wang Y C, Lv J, Ma Y M, Cui Q L, Ma Y M and Zou G T 2011 Phys. Rev. Lett. 106 145501
[29] Zhao Z S, Xu B, Wang L M, Zhou X F, He J L, Liu Z Y, Wang H T and Tian Y J 2011 ACS Nano 5 7226
[30] Blanco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
[31] Ma Y M, Wang Y C, Lv J and Zhu L http://nlshm-lab.jlu.edu.cn/ ~ calypso.html
[32] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[37] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[38] Hill R 1952 Proc. Phys. Soc. A 65 349
[39] Birch F 1947 Phys. Rev. 71 809
[40] Will G and Kiefer B 2001 Z. Anorg. Allg. Chem. 627 2100
[41] Born M 1940 Proc. Cambridge Philos. Soc. 36 160
[42] Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
[43] Jiang X, Zhao J J and Jiang X 2011 Comp. Mater. Sci. 50 2287
[44] Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
[45] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[46] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J and Meng J 2008 J. Alloys Compd. 453 413
[47] Li Y L and Zeng Z 2009 Chem. Phys. Lett. 474 93
[48] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Cao X Q and Meng J 2006 Phys. Rev. B 74 224112
[49] Johnston W D, Miller R C and Damon D H 1965 J. Less-Common Met. 8 272
[50] Peng F, Liu Q, Fu H Z and Yang X D 2009 Solid State Commun. 149 56
[51] Yan H Y, Zhang M G, Huang D H and Wei Q 2013 Solid State Sci. 18 17
[52] Yan H Y and Zhang M G 2014 Comp. Mater. Sci. 86 124
[53] Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z and Liu R P 2013 J. Appl. Phys. 114 183517"
[1] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[2] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[3] Improving RNA secondary structure prediction using direct coupling analysis
Xiaoling He(何小玲), Jun Wang(王军), Jian Wang(王剑), Yi Xiao(肖奕). Chin. Phys. B, 2020, 29(7): 078702.
[4] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[5] Cluster structure prediction via CALYPSO method
Yonghong Tian(田永红), Weiguo Sun(孙伟国), Bole Chen(陈伯乐), Yuanyuan Jin(金圆圆), Cheng Lu(卢成). Chin. Phys. B, 2019, 28(10): 103104.
[6] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[7] Geoscience material structures prediction via CALYPSO methodology
Andreas Hermann. Chin. Phys. B, 2019, 28(10): 106107.
[8] The role of CALYPSO in the discovery of high-Tc hydrogen-rich superconductors
Wenwen Cui(崔文文), Yinwei Li(李印威). Chin. Phys. B, 2019, 28(10): 107104.
[9] Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure
Yang-Mei Chen(陈杨梅), Hua-Yun Geng(耿华运), Xiao-Zhen Yan(颜小珍), Zi-Wei Wang(王紫薇), Xiang-Rong Chen(陈向荣), Qiang Wu(吴强). Chin. Phys. B, 2017, 26(5): 056102.
[10] RNA structure prediction:Progress and perspective
Shi Ya-Zhou (时亚洲), Wu Yuan-Yan (吴园燕), Wang Feng-Hua (王凤华), Tan Zhi-Jie (谭志杰). Chin. Phys. B, 2014, 23(7): 078701.
[11] High-pressure-activated carbon tetrachloride decomposition
Chen Yuan-Zheng (陈元正), Zhou Mi (周密), Sun Mei-Jiao (孙美娇), Li Zuo-Wei (里佐威), Sun Cheng-Lin (孙成林). Chin. Phys. B, 2014, 23(2): 023302.
[12] The ground-state structure and physical properties of RuC: first-principles calculations
Zhang Mei-Guang(张美光), Yan Hai-Yan(闫海燕), Zhang Gang-Tai(张刚台), and Wang Hui(王晖) . Chin. Phys. B, 2012, 21(7): 076103.
[13] High-pressure structures of InBi predicted by particle swarm optimization algorithm
Liu Huan-Huan(刘欢欢) and Liu Yan-Hui(刘艳辉) . Chin. Phys. B, 2012, 21(2): 026102.
[14] Functional structures and folding dynamics of two peptides
Sheng Yue-Biao (盛乐标), Li Jing (李菁), Ma Bao-Liang (马保亮), Wang Wei (王炜). Chin. Phys. B, 2005, 14(11): 2365-2369.
No Suggested Reading articles found!