ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Low insertion loss silicon-based spatial light modulator with high reflective materials outside Fabry-Perot cavity |
Li-Fei Tian(田立飞)1,2, Ying-Xin Kuang(匡迎新)1,2, Zhong-Chao Fan(樊中朝)2, Zhi-Yong Li(李智勇)1 |
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The extinction ratio and insertion loss of spatial light modulator are subject to the material problem, thus limiting its applications. One reflection-type silicon-based spatial light modulator with high reflective materials outside the Fabry-Perot cavity is demonstrated in this paper. The reflectivity values of the outside-cavity materials with different film layer numbers are simulated. The reflectivity values of 6-pair Ta2O5/SiO2 films at 1550 nm are experimentally verified to be as high as 99.9%. The surfaces of 6-pair Ta2O5/SiO2 films are smooth:their root-mean-square roughness values are as small as 0.53 nm. The insertion loss of the device at 1550 nm is only 1.2 dB. The high extinction ratio of the device at 1550 nm and 11 V is achieved to be 29.7 dB. The spatial light modulator has a high extinction ratio and low insertion loss for applications.
|
Received: 19 June 2019
Revised: 10 July 2019
Accepted manuscript online:
|
PACS:
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
95.85.Jq
|
(Near infrared (0.75-3 μm))
|
|
71.20.Mq
|
(Elemental semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575076 and 61804148) and the National Key Research and Development Plan of China (Grant No. 2016YFB0402502). |
Corresponding Authors:
Zhong-Chao Fan, Zhi-Yong Li
E-mail: zcfan@semi.ac.cn;lizhy@semi.ac.cn
|
Cite this article:
Li-Fei Tian(田立飞), Ying-Xin Kuang(匡迎新), Zhong-Chao Fan(樊中朝), Zhi-Yong Li(李智勇) Low insertion loss silicon-based spatial light modulator with high reflective materials outside Fabry-Perot cavity 2019 Chin. Phys. B 28 104209
|
[40] |
Haelbich R P, Segmuller A and Spiller E 1979 Appl. Phys. Lett. 34 184
|
[1] |
Feng F, White I H and Wilkinson T D 2013 J. Lightwave Technol. 31 2001
|
[41] |
Cho H J, Shin M J and Lee J C 2006 Appl. Opt. 45 1440
|
[2] |
Gailele L, Dudley A and Forbes A 2018 Conference on Laser Beam Shaping XVⅢ, August 20-21, 2018, San Diego, USA, p. 1074414
|
[42] |
Whitehead M, Parry G and Wheatley P 1989 IEE P.-J. Optoelectron. 136 52
|
[3] |
Mills B, Thomson D J, Mashanovich G Z, Reed G T, Vynck K, Muskens O L, Lalanne P and Bruck R 2016 Optica 3 396
|
[43] |
Chandrasekhar S, Vengurlekar A S, Roy S K and Karulkar V T 1988 J. Appl. Phys. 63 2072
|
[4] |
Lutkenhaus J, Lowell D, George D, Zhang H, Lin Y and Lin Y 2016 Micromachines 7 59
|
[5] |
Ni H, Zou L, Guo Q and Ding X 2017 Opt. Express 25 2872
|
[6] |
Li L, Xie G, Ren Y, Ahmed N, Huang H, Zhao Z, Liao P, Lavery M P, Yan Y and Bao C 2016 Appl. Opt. 55 2098
|
[7] |
Wang Y, Ren Y, Chen L, Song C, Li C, Zhang C, Xu D and Yao J 2018 Chin. Phys. B 27 114204
|
[8] |
Du X, Chang J, Zhang Y, Wang X, Zhang B, Gao L and Xiao L 2015 Opt. Express 23 26032
|
[9] |
Ouyang B, Hou W, Caimi F M, Dalgleish F R, Vuorenkoski A K, Gong S and Britton W 2015 Conference on Compressive Sensing IV, April 22-24, 2015, Baltimore, USA, p. 94840I
|
[10] |
Gutierrez F A, Perry P, Martin E P, Ellis A D, Smyth F and Barry L P 2015 J. Lightwave Technol. 33 5073
|
[11] |
Mathis A, Froehly L, Toenger S, Dias F, Genty G and Dudley J M 2015 Sci. Rep. 5 12822
|
[12] |
Sun S, Zhang R, Peng J, Narayana V K, Dalir H, El-Ghazawi T and Sorger V J 2018 Opt. Express 26 8252
|
[13] |
Xia X W, Ewing T K, Serati S A, Fu Y J, Zhou R, Neff J A, and Barnes F S 2003 Conference on Active and Passive Optical Components for WDM Communications Ⅲ, August 14, 2003, Orlando, USA, p. 95
|
[14] |
Wang H T, Zhou D B, Zhang R K, Lu D, Zhao L J, Zhu H L, Wang W and Ji C 2015 Chin. Phys. Lett. 32 084203
|
[15] |
Zhou D B, Wang H T, Zhang R K, Wang B J, Bian J, An X, Lu D, Zhao L J, Zhu H L, Ji C and Wang W 2015 Chin. Phys. Lett. 32 054205
|
[16] |
Cao Y M, Wu B J, Wan F and Qiu K 2018 Acta Phys. Sin. 67 094208 (in Chinese)
|
[17] |
Liu Y K, Wang X L, Su R T, Ma P F, Zhang H W, Zhou P and Si L 2017 Acta Phys. Sin. 66 234203 (in Chinese)
|
[18] |
Liu X, Yang L, Ma J, Li C, Jin W and Bi W 2018 Chin. Phys. B 27 104206
|
[19] |
Imura T, Koga H, Lim P B, Umezawa H, Horimai H and Inoue M 2006 Conference on Optical Information Systems IV, August 16-17, 2006, San Diego, USA, p. 631115
|
[20] |
Takizawa K, Kikuchi H, Fujikake H and Okada M 1990 Appl. Phys. Lett. 56 999
|
[21] |
Pan R P, Shieu C R, Lu W L, Huang M J and Pan C L 2001 Conference on Spatial Light Modulators, July 31-August 01, 2001, San Diego, USA, p. 111
|
[22] |
Takahashi K, Kawanishi F, Mito S, Takagi H, Shin K H, Kim J, Lim P B, Uchida H and Inoue M 2008 J. Appl. Phys. 103 07B331
|
[23] |
Hwang C Y, Lee S Y, Kim Y H, Kim T Y, Kim G H, Yang J H, Pi J E, Choi J H, Choi K, Kim H O and Hwang C S 2017 Appl. Phys. Express 10 122201
|
[24] |
Lee G, Nouman M T, Hwang J H, Kim H W and Jang J H 2018 AIP Adv. 8 1401
|
[25] |
Zeng C, Guo J and Liu X 2014 Appl. Phys. Lett. 105 121103
|
[26] |
Hasan M and Hall T 2017 J. Mod. Opt. 64 2268
|
[27] |
Xu X, Zhou Y, Yuan Y S, Wang J, Xu H F and Qu J 2018 AIP Adv. 8 125007
|
[28] |
Zeiler M, Detraz S, Olantera L, Pezzullo G, El Nasr-Storey S S, Sigaud C, Soos C, Troska J and Vasey F 2016 J. Instrum. 11 C01040
|
[29] |
Xu E M, Zhang Z X and Li P L 2017 Chin. Phys. Lett. 34 014203
|
[30] |
Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C and Rong L 2017 Acta Phys. Sin. 66 098401 (in Chinese)
|
[31] |
Guo J and Dai D 2018 Chin. Phys. B 27 104208
|
[32] |
Sun T, Kim J, Yuk J M, Zettl A, Wang F and Changhasnain C 2016 Opt. Express 24 26035
|
[33] |
Greenlee C, Luo J, Leedy K, Bayraktaroglu B, Norwood R A, Fallahi M, Jen A K Y and Peyghambarian N 2011 Opt. Express 19 12750
|
[34] |
Worchesky T L, Ritter K J, Martin R and Lane B 1996 Appl. Opt. 35 1180
|
[35] |
Panezai S, Wang D, Zhao J, Wang Y and Rong L 2014 Appl. Opt. 53 105
|
[36] |
Bleha W P and Lei L A 2013 Conference on Display Technologies and Applications for Defense, Security, and Avionics VⅡ, May 02, 2013, Baltimore, USA, p. 87360A
|
[37] |
Horie Y, Arbabi A, Arbabi E, Karnali S M and Faraon A 2018 ACS Photon. 5 1711
|
[38] |
Tang J, Gu P, Liu X and Li H 1993 Appl. Opt. 32 5492
|
[39] |
Amra C, Grezesbesset C and Bruel L 1993 Appl. Opt. 32 5492
|
[40] |
Haelbich R P, Segmuller A and Spiller E 1979 Appl. Phys. Lett. 34 184
|
[41] |
Cho H J, Shin M J and Lee J C 2006 Appl. Opt. 45 1440
|
[42] |
Whitehead M, Parry G and Wheatley P 1989 IEE P.-J. Optoelectron. 136 52
|
[43] |
Chandrasekhar S, Vengurlekar A S, Roy S K and Karulkar V T 1988 J. Appl. Phys. 63 2072
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|