Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104209    DOI: 10.1088/1674-1056/ab427c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Low insertion loss silicon-based spatial light modulator with high reflective materials outside Fabry-Perot cavity

Li-Fei Tian(田立飞)1,2, Ying-Xin Kuang(匡迎新)1,2, Zhong-Chao Fan(樊中朝)2, Zhi-Yong Li(李智勇)1
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

The extinction ratio and insertion loss of spatial light modulator are subject to the material problem, thus limiting its applications. One reflection-type silicon-based spatial light modulator with high reflective materials outside the Fabry-Perot cavity is demonstrated in this paper. The reflectivity values of the outside-cavity materials with different film layer numbers are simulated. The reflectivity values of 6-pair Ta2O5/SiO2 films at 1550 nm are experimentally verified to be as high as 99.9%. The surfaces of 6-pair Ta2O5/SiO2 films are smooth:their root-mean-square roughness values are as small as 0.53 nm. The insertion loss of the device at 1550 nm is only 1.2 dB. The high extinction ratio of the device at 1550 nm and 11 V is achieved to be 29.7 dB. The spatial light modulator has a high extinction ratio and low insertion loss for applications.

Keywords:  spatial light modulator      high reflective materials      silicon-based      Fabry-Perot cavity  
Received:  19 June 2019      Revised:  10 July 2019      Accepted manuscript online: 
PACS:  42.79.Hp (Optical processors, correlators, and modulators)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  95.85.Jq (Near infrared (0.75-3 μm))  
  71.20.Mq (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575076 and 61804148) and the National Key Research and Development Plan of China (Grant No. 2016YFB0402502).
Corresponding Authors:  Zhong-Chao Fan, Zhi-Yong Li     E-mail:  zcfan@semi.ac.cn;lizhy@semi.ac.cn

Cite this article: 

Li-Fei Tian(田立飞), Ying-Xin Kuang(匡迎新), Zhong-Chao Fan(樊中朝), Zhi-Yong Li(李智勇) Low insertion loss silicon-based spatial light modulator with high reflective materials outside Fabry-Perot cavity 2019 Chin. Phys. B 28 104209

[40] Haelbich R P, Segmuller A and Spiller E 1979 Appl. Phys. Lett. 34 184
[1] Feng F, White I H and Wilkinson T D 2013 J. Lightwave Technol. 31 2001
[41] Cho H J, Shin M J and Lee J C 2006 Appl. Opt. 45 1440
[2] Gailele L, Dudley A and Forbes A 2018 Conference on Laser Beam Shaping XVⅢ, August 20-21, 2018, San Diego, USA, p. 1074414
[42] Whitehead M, Parry G and Wheatley P 1989 IEE P.-J. Optoelectron. 136 52
[3] Mills B, Thomson D J, Mashanovich G Z, Reed G T, Vynck K, Muskens O L, Lalanne P and Bruck R 2016 Optica 3 396
[43] Chandrasekhar S, Vengurlekar A S, Roy S K and Karulkar V T 1988 J. Appl. Phys. 63 2072
[4] Lutkenhaus J, Lowell D, George D, Zhang H, Lin Y and Lin Y 2016 Micromachines 7 59
[5] Ni H, Zou L, Guo Q and Ding X 2017 Opt. Express 25 2872
[6] Li L, Xie G, Ren Y, Ahmed N, Huang H, Zhao Z, Liao P, Lavery M P, Yan Y and Bao C 2016 Appl. Opt. 55 2098
[7] Wang Y, Ren Y, Chen L, Song C, Li C, Zhang C, Xu D and Yao J 2018 Chin. Phys. B 27 114204
[8] Du X, Chang J, Zhang Y, Wang X, Zhang B, Gao L and Xiao L 2015 Opt. Express 23 26032
[9] Ouyang B, Hou W, Caimi F M, Dalgleish F R, Vuorenkoski A K, Gong S and Britton W 2015 Conference on Compressive Sensing IV, April 22-24, 2015, Baltimore, USA, p. 94840I
[10] Gutierrez F A, Perry P, Martin E P, Ellis A D, Smyth F and Barry L P 2015 J. Lightwave Technol. 33 5073
[11] Mathis A, Froehly L, Toenger S, Dias F, Genty G and Dudley J M 2015 Sci. Rep. 5 12822
[12] Sun S, Zhang R, Peng J, Narayana V K, Dalir H, El-Ghazawi T and Sorger V J 2018 Opt. Express 26 8252
[13] Xia X W, Ewing T K, Serati S A, Fu Y J, Zhou R, Neff J A, and Barnes F S 2003 Conference on Active and Passive Optical Components for WDM Communications Ⅲ, August 14, 2003, Orlando, USA, p. 95
[14] Wang H T, Zhou D B, Zhang R K, Lu D, Zhao L J, Zhu H L, Wang W and Ji C 2015 Chin. Phys. Lett. 32 084203
[15] Zhou D B, Wang H T, Zhang R K, Wang B J, Bian J, An X, Lu D, Zhao L J, Zhu H L, Ji C and Wang W 2015 Chin. Phys. Lett. 32 054205
[16] Cao Y M, Wu B J, Wan F and Qiu K 2018 Acta Phys. Sin. 67 094208 (in Chinese)
[17] Liu Y K, Wang X L, Su R T, Ma P F, Zhang H W, Zhou P and Si L 2017 Acta Phys. Sin. 66 234203 (in Chinese)
[18] Liu X, Yang L, Ma J, Li C, Jin W and Bi W 2018 Chin. Phys. B 27 104206
[19] Imura T, Koga H, Lim P B, Umezawa H, Horimai H and Inoue M 2006 Conference on Optical Information Systems IV, August 16-17, 2006, San Diego, USA, p. 631115
[20] Takizawa K, Kikuchi H, Fujikake H and Okada M 1990 Appl. Phys. Lett. 56 999
[21] Pan R P, Shieu C R, Lu W L, Huang M J and Pan C L 2001 Conference on Spatial Light Modulators, July 31-August 01, 2001, San Diego, USA, p. 111
[22] Takahashi K, Kawanishi F, Mito S, Takagi H, Shin K H, Kim J, Lim P B, Uchida H and Inoue M 2008 J. Appl. Phys. 103 07B331
[23] Hwang C Y, Lee S Y, Kim Y H, Kim T Y, Kim G H, Yang J H, Pi J E, Choi J H, Choi K, Kim H O and Hwang C S 2017 Appl. Phys. Express 10 122201
[24] Lee G, Nouman M T, Hwang J H, Kim H W and Jang J H 2018 AIP Adv. 8 1401
[25] Zeng C, Guo J and Liu X 2014 Appl. Phys. Lett. 105 121103
[26] Hasan M and Hall T 2017 J. Mod. Opt. 64 2268
[27] Xu X, Zhou Y, Yuan Y S, Wang J, Xu H F and Qu J 2018 AIP Adv. 8 125007
[28] Zeiler M, Detraz S, Olantera L, Pezzullo G, El Nasr-Storey S S, Sigaud C, Soos C, Troska J and Vasey F 2016 J. Instrum. 11 C01040
[29] Xu E M, Zhang Z X and Li P L 2017 Chin. Phys. Lett. 34 014203
[30] Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C and Rong L 2017 Acta Phys. Sin. 66 098401 (in Chinese)
[31] Guo J and Dai D 2018 Chin. Phys. B 27 104208
[32] Sun T, Kim J, Yuk J M, Zettl A, Wang F and Changhasnain C 2016 Opt. Express 24 26035
[33] Greenlee C, Luo J, Leedy K, Bayraktaroglu B, Norwood R A, Fallahi M, Jen A K Y and Peyghambarian N 2011 Opt. Express 19 12750
[34] Worchesky T L, Ritter K J, Martin R and Lane B 1996 Appl. Opt. 35 1180
[35] Panezai S, Wang D, Zhao J, Wang Y and Rong L 2014 Appl. Opt. 53 105
[36] Bleha W P and Lei L A 2013 Conference on Display Technologies and Applications for Defense, Security, and Avionics VⅡ, May 02, 2013, Baltimore, USA, p. 87360A
[37] Horie Y, Arbabi A, Arbabi E, Karnali S M and Faraon A 2018 ACS Photon. 5 1711
[38] Tang J, Gu P, Liu X and Li H 1993 Appl. Opt. 32 5492
[39] Amra C, Grezesbesset C and Bruel L 1993 Appl. Opt. 32 5492
[40] Haelbich R P, Segmuller A and Spiller E 1979 Appl. Phys. Lett. 34 184
[41] Cho H J, Shin M J and Lee J C 2006 Appl. Opt. 45 1440
[42] Whitehead M, Parry G and Wheatley P 1989 IEE P.-J. Optoelectron. 136 52
[43] Chandrasekhar S, Vengurlekar A S, Roy S K and Karulkar V T 1988 J. Appl. Phys. 63 2072
[1] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[2] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[3] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[4] Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry-Perot cavity
Di Wang(王迪), Meng Ding(丁孟), Hao-Yang Pi(皮浩洋), Xuan Li(李璇), Fei Yang(杨飞), Qing Ye(叶青), Hai-Wen Cai(蔡海文), Fang Wei(魏芳). Chin. Phys. B, 2018, 27(2): 024207.
[5] Generation of Mathieu beams using angular pupil modulation
Zhijun Ren(任志君), Jinping He(何晋平), Yile Shi(施逸乐). Chin. Phys. B, 2018, 27(12): 124201.
[6] Terahertz two-pixel imaging based on complementary compressive sensing
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Linyu Chen(陈霖宇), Ci Song(宋词), Changzhao Li(李长昭), Chao Zhang(张超), Degang Xu(徐德刚), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114204.
[7] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[8] Fast generation of controllable equal-intensity four beams based on isosceles triangle multilevel phase grating realized by liquid crystal spatial light modulator
Liu Xiang(刘翔), Zhang Jian(张健), Wu Li-Ying(吴丽莹), and Gan Yu(甘雨) vgluept . Chin. Phys. B, 2011, 20(2): 024211.
[9] Multifunctional silicon-based light emitting device in standard complementary metal–oxide–semiconductor technology
Wang Wei(王伟), Huang Bei-Ju(黄北举), Dong Zan(董赞), and Chen Hong-Da(陈弘达). Chin. Phys. B, 2011, 20(1): 018503.
[10] Matter-wave interference in an axial triple-well optical dipole trap
Zhou Qi(周琦), Lu Jun-Fa(陆俊发), and Yin Jian-Ping(印建平). Chin. Phys. B, 2010, 19(9): 093202.
[11] Controllable optical multi-well trap and its optical lattices using compounded cosine patterns
Zhou Qi(周琦), Lu Jun-Fa(陆俊发), and Yin Jian-Ping(印建平). Chin. Phys. B, 2010, 19(12): 123203.
[12] Diffractive characteristics of the liquid crystal spatial light modulator
Cao Zhao-Liang(曹召良), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Liu Yong-Gang(刘永刚), and Xuan Li(宣丽). Chin. Phys. B, 2007, 16(6): 1665-1671.
[13] Steering light into logic patterns with two-dimensional cascaded multimode waveguide
Zhou Hai-Feng(周海峰), Yang Jian-Yi(杨建义), Wang Ming-Hua(王明华), and Jiang Xiao-Qing(江晓清). Chin. Phys. B, 2007, 16(3): 740-745.
No Suggested Reading articles found!