INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties |
Wei-Qi Yu(余维琪)1,2, Yi-Chen Qiu(邱怡宸)3, Hong-Jun Xiao(肖红君)2, Hai-Tao Yang(杨海涛)3,4, Ge-Ming Wang(王戈明)1 |
1 School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; 2 National Center for Nanoscience and Technology, Beijing 100190, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 Fujian Institute of Innovation, Chinese Academy of Sciences, Fozhou 350108, China |
|
|
Abstract Large-area and flexible reduced graphene oxide (rGO)/Fe3O4 NPs/polyurethane (PU) composite films are fabricated by a facile solution-processable method. The monolayer assembly of Fe3O4 nanoparticles with a high particle-stacking density on the graphene oxide (GO) sheets is achieved by mixing two immiscible solutions of Fe3O4 nanoparticles in hexane and GO in dimethylformide (DMF) by a mild sonication. The x-ray diffraction and Raman spectrum confirm the reduced process of rGO by a simple thermal treatment. The permittivity value of the composite in a frequency range of 0.1 GHz-18 GHz increases with annealing temperature of GO increasing. For 5-wt% rGO/Fe3O4 NPs/PU, the maximum refection loss (RL) of over -35 dB appears at 4.5 GHz when the thickness of film increases to 5 mm. The rGO/Fe3O4 NPs/PU film, exhibiting good electromagnetic properties over GHz frequency range, could be a potential candidate as one of microwave absorption materials in flexible electronic devices.
|
Received: 21 July 2019
Revised: 24 August 2019
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
67.80.dm
|
(Films)
|
|
92.60.Ta
|
(Electromagnetic wave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370, 51471185, and 11704288) and the National Key Research and Development Program of China (Grant Nos. 2016YFJC020013 and 2018FYA0305800). |
Corresponding Authors:
Hong-Jun Xiao, Ge-Ming Wang
E-mail: xiaohj@nanoctr.cn;wanggemingwit@163.com
|
Cite this article:
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明) Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties 2019 Chin. Phys. B 28 108103
|
[1] |
Kong L B, Li Z W, Liu L, Huang R, Abshinova M, Yang Z H, Tang C B, Tan P K, Deng C R and Matitsine S 2013 Int. Mater. Rev. 58 203
|
[2] |
Chakraborty U, Chatterjee S, Chowdhury S K and Sarkar P P 2011 Prog. Electromagn. Res. C 18 211
|
[3] |
Sun X, He J P, Li G X, Tang J, Wang T, Guo Y X and Xue H R 2013 J. Mater. Chem. C 1 765
|
[4] |
Yang Z H, Li Z W, Yang Y H and Xu Z C 2014 ACS Appl. Mater. Interfaces 6 21911
|
[5] |
Lv H L, Zhang H Q, Ji G G and Xu Z C 2016 ACS Appl. Mater. Interfaces 8 6529
|
[6] |
Sebastian M T and Jantunen H 2008 Int. Mater. Rev. 53 57
|
[7] |
Buerkle A, Sarabandi K and Mosallaei H 2005 IEEE Trans. Anten. Propag. 53 1020
|
[8] |
Truong V T, Riddell S Z and Muscat R F 1998 J. Mater. Sci. 33 4971
|
[9] |
Kim J, Khoh W H, Wee B H and Hong J D 2015 RSC Adv. 5 9904
|
[10] |
Quan B, Shi W H, Ong S J H, Lu X C, Wang P L Y, Ji G B, Guo Y F, Zheng L R and Xu Z C 2019 Adv. Funct. Mater. 29 1901236
|
[11] |
Li Q, Zhang Z, Qi L P, Liao Q L, Kang Z and Zhang Y 2019 Adv. Sci. 6 8
|
[12] |
Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z and Chen Y 2015 Adv. Mater. 27 2049
|
[13] |
Chen D Z, Wang G S, He S, Liu J, Guo L and Cao M S 2013 J. Mater. Chem. A 1 5996
|
[14] |
Wang T, Li Y, Wang, Liu L C, Geng S, Jia X, Yang F, Zhang L, Liu L, You B, Ren X and Yang H T 2015 RSC Adv. 5 60114
|
[15] |
Zhang X J, Wang G S, Cao W Q, Wei Y Z, Cao M S and Guo L 2014 RSC Adv. 4 19594
|
[16] |
Han M, Yin X, Kong L, Li M, Duan W, Zhang L and Cheng L 2014 J. Mater. Chem. A 2 16403
|
[17] |
Huang J, Cheng S P, Chen Y X, Chen Z L, Luo H, Xia X H and Liu H B 2019 J. Mater. Chem. A 7 16720
|
[18] |
Li C, Fu Y S, Wu Z, Xia J W and Wang X 2019 Nanoscale 11 12997
|
[19] |
Li X, Lu S Y, Xiong Z G, Hu Y, Ma D, Lou W Q, Peng C, Shen M W and Shi X Y 2019 Adv. Sci. 08 August
|
[20] |
Zhang L, Wan X N, Duan W J, Qiu H, Hou J Q, Wang X R, Li H and Du X Y 2019 J. Nanosci. Nanotechnol. 19 7664
|
[21] |
Mahmudzadeh M, Yari H, Ramezanzadeh B and Mahdavian M 2019 J. Indus. Engi. Chem. 78 125
|
[22] |
Pena-Bahamonde J, San-Miguel V, Baselga J, Fernandez-Blazquez J P, Gedler G, Ozisik R and Cabanelas J C 2019 Carbon 151 84
|
[23] |
Song N N, Yang H T, Ren X, Li Z A, Luo Y, Shen J, Dai W, Zhang X Q and Cheng Z H 2013 Nanoscale 5 2804
|
[24] |
Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
|
[25] |
Liang Y, Wu D, Feng X and Müllen K 2009 Adv. Mater. 21 1679
|
[26] |
Guo S J and Sun S H 2012 J. Am. Chem. Soc. 134 2492
|
[27] |
Ma R S, Huan Q, Wu L M, Yan J H, Zhang Y Y, Bao L H, Liu Y Q, Du S X and Gao H J 2017 Chin. Phys. B 26 066801
|
[28] |
Guo H, Wang X Y, Bao D L, Lu H L, Zhang Y Y, Li G, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 078103
|
[29] |
Tung V C, Allen M J, Yang Y and Kaner R B 2009 Nat. Nano 4 25
|
[30] |
Song N N, Yang H T, Liu H L, Ren X, Ding H F, Zhang X Q and Cheng Z H 2013 Sci. Rep. 3 3161
|
[31] |
Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Tech. 19 65
|
[32] |
Davalos A L and Zanette A 1999 Fundamentals of Electromagnetism
|
[33] |
Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F, Cheng L and Zhang L 2013 J. Phys. Chem. C 117 19701
|
[34] |
Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4128
|
[35] |
Li X P, Deng Z M, Li Y, Zhang H B, Zhao S, Zhang Y, Wu X Y and Yu Z Z 2019 Carbon 147 172
|
[36] |
Tang J M, Liang N, Wang L, Li J, Tian G, Zhang D, Feng S H and Yue H J 2019 Carbon 152 575
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|