ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios |
Jia-Ye Wu(吴嘉野)1,2, Xu-Hang Wu(吴栩航)1, Xiang-Bo Yang(杨湘波)1, Hai-Ying Li(李海盈)1 |
1 Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; 2 Laboratory of Nonlinear Fiber Optics, School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China |
|
|
Abstract By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional (1D) parity-time-symmetric (PT-symmetric) two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios respectively. It is found that the number and the corresponding frequencies of the extremum spontaneous PT-symmetric breaking points are dependent on the waveguide length ratio. Near the extremum breaking points, ultrastrong extraordinary transmissions are created and the maximal can arrive at, respectively, 2.4079×1014 and 4.3555×1013 in both kinds of networks. However, bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratio, whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication of PT-symmetric optical waveguide networks, which possesses great potential in designing optical amplifiers, optical energy saver devices, and special optical filters.
|
Received: 10 June 2019
Revised: 17 July 2019
Accepted manuscript online:
|
PACS:
|
42.15.Eq
|
(Optical system design)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674107, 61475049, 11775083, 61875057, 61774062, and 61771205) and Special Funds for the Cultivation of Guangdong College Students' Scientific and Techonlogical Innovation, China (Grant No. pdjhb0139). |
Corresponding Authors:
Xiang-Bo Yang
E-mail: xbyang@scnu.edu.cn
|
Cite this article:
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈) Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios 2019 Chin. Phys. B 28 104208
|
[41] |
Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
|
[1] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[42] |
Cai L, Yang X and Lu J 2011 Journal of Electromagnetic Waves and Applications 25 147
|
[2] |
Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
|
[43] |
Lu J, Yang X and Cai L 2012 Opt. Commun. 285 459
|
[3] |
Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
|
[44] |
Xiao Q, Yang X, Lu J and Liu C 2012 Opt. Commun. 285 3775
|
[4] |
Bender C M 2007 Reports on Progress in Physics 70 947
|
[45] |
Yang X, Song H and Liu T C 2013 Phys. Lett. A 377 3048
|
[5] |
El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Optics Lett. 32 2632
|
[46] |
Wang Y, Yang X, Lu J, Zhang G and Liu C T 2014 Phys. Lett. A 378 1200
|
[6] |
Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
|
[47] |
Tang Z, Yang X, Lu J and Liu C T 2014 Opt. Commun. 331 53
|
[7] |
Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
|
[48] |
Tang Z X, Yang X B, Lu J and Liu T C Y 2014 Chin. Phys. B 23 044207
|
[8] |
Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
|
[49] |
Xu X, Yang X, Wang S, Liu T C and Deng D 2015 Opt. Express 23 27576
|
[9] |
Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
|
[50] |
Hu X, Yang X and Deng D 2017 IEEE Photon. J. 9 4700414
|
[10] |
Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
|
[51] |
Hu X, Yang X and Deng D 2017 Phys. Lett. A 381 1241
|
[11] |
Ding S and Wang G P 2012 Appl. Phys. Lett. 100 151913
|
[52] |
Wu J and Yang X 2019 Annalen der Physik 531 1800258
|
[12] |
Konotop V V, Shchesnovich V S and Zezyulin D A 2012 Phys. Lett. A 376 2750
|
[53] |
Wu J and Yang X 2017 Opt. Express 25 27724
|
[13] |
Bludov Y V, Konotop V V and Malomed B A 2013 Phys. Rev. A 87 013816
|
[54] |
Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
|
[14] |
Chamorro-Posada P 2014 J. Opt. Soc. Am. B 31 2728
|
[55] |
Palik E D 1998 Handbook of Optical Constants of Solids (1st Edn.) (San Diego: Academic Press)
|
[15] |
Dai C, Wang Y and Zhang X 2014 Opt. Express 22 29862
|
[56] |
Aleksandrova A, Monastyrskyi G, Flores Y and Ted Masselink W 2012 Appl. Opt. 51 6789
|
[16] |
Gupta S K and Sarma A K 2014 J. Mod. Opt. 61 227
|
[17] |
Hang C, Zezyulin D A, Huang G, Konotop V V and Malomed B A 2014 Opt. Lett. 39 5387
|
[18] |
Huang C, Ye F and Chen X 2014 Phys. Rev. A 90 043833
|
[19] |
Feijoo D, Zezyulin D A and Konotop V V 2015 Phys. Rev. E 92 062909
|
[20] |
Ge L, Makris K G, Christodoulides D N and Feng L 2015 Phys. Rev. A 92 062135
|
[21] |
Jia Y, Yan Y, Kesava S V, Gomez E D and Giebink N C 2015 ACS Photon. 2 319
|
[22] |
Alaeian H, Baum B, Jankovic V, Lawrence M and Dionne J A 2016 Phys. Rev. B 93 205439
|
[23] |
Hang C, Zezyulin D A, Huang G and Konotop V V 2016 IEEE J. Select. Top. Quantum Electron. 22 5
|
[24] |
Nguyen N B, Maier S A, Hong M and Oulton R F 2016 New J. Phys. 18 125012
|
[25] |
Walasik W and Litchinitser N M 2016 Sci. Rep. 6 19826
|
[26] |
Fu Y, Xu Y and Chen H 2016 Opt. Express 24 1648
|
[27] |
Wu B, Wu B, Xu J, Xiao J and Chen Y 2016 Opt. Express 24 16566
|
[28] |
Li H, Zhu X, Shi Z and Lai T 2017 J. Opt. Soc. Am. B 34 709
|
[29] |
Wang J, Dong H Y, Wu R P H, Mok T C and Fung K H 2017 Opt. Lett. 42 535
|
[30] |
Raju T S, Hegde T A and Kumar C N 2016 J. Opt. Soc. Am. B 33 35
|
[31] |
Cao P, Yang X, Wang S, Huang Y, Wang N, Deng D and Liu C T 2017 IEEE Photon. J. 9 1
|
[32] |
Sarisaman M and Tas M 2018 J. Opt. Soc. Am. B 35 2423
|
[33] |
Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
|
[34] |
Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
|
[35] |
Zhang Z Q, Wong C C, Fung K K, Ho Y L, Chan W L, Kan S C, Chan T L and Cheung N 1998 Phys. Rev. Lett. 81 5540
|
[36] |
Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur J O and Zemmouri J 1998 Phys. Rev. B 57 R9388
|
[37] |
Mir A, Akjouj A, Vasseur J O, Djafari-Rouhani B, Fettouhi N, Boudouti E H E, Dobrzynski L and Zemmouri J 2003 J. Phys.: Conden. Matter 15 1593
|
[38] |
Cheung S K, Chan T L, Zhang Z Q and Chan C T 2004 Phys. Rev. B 70 125104
|
[39] |
Wang Z Y and Yang X 2007 Phys. Rev. B 76 235104
|
[40] |
Song H H and Yang X B 2010 Chin. Phys. B 19 74213
|
[41] |
Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
|
[42] |
Cai L, Yang X and Lu J 2011 Journal of Electromagnetic Waves and Applications 25 147
|
[43] |
Lu J, Yang X and Cai L 2012 Opt. Commun. 285 459
|
[44] |
Xiao Q, Yang X, Lu J and Liu C 2012 Opt. Commun. 285 3775
|
[45] |
Yang X, Song H and Liu T C 2013 Phys. Lett. A 377 3048
|
[46] |
Wang Y, Yang X, Lu J, Zhang G and Liu C T 2014 Phys. Lett. A 378 1200
|
[47] |
Tang Z, Yang X, Lu J and Liu C T 2014 Opt. Commun. 331 53
|
[48] |
Tang Z X, Yang X B, Lu J and Liu T C Y 2014 Chin. Phys. B 23 044207
|
[49] |
Xu X, Yang X, Wang S, Liu T C and Deng D 2015 Opt. Express 23 27576
|
[50] |
Hu X, Yang X and Deng D 2017 IEEE Photon. J. 9 4700414
|
[51] |
Hu X, Yang X and Deng D 2017 Phys. Lett. A 381 1241
|
[52] |
Wu J and Yang X 2019 Annalen der Physik 531 1800258
|
[53] |
Wu J and Yang X 2017 Opt. Express 25 27724
|
[54] |
Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
|
[55] |
Palik E D 1998 Handbook of Optical Constants of Solids (1st Edn.) (San Diego: Academic Press)
|
[56] |
Aleksandrova A, Monastyrskyi G, Flores Y and Ted Masselink W 2012 Appl. Opt. 51 6789
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|