Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104208    DOI: 10.1088/1674-1056/ab3f92
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios

Jia-Ye Wu(吴嘉野)1,2, Xu-Hang Wu(吴栩航)1, Xiang-Bo Yang(杨湘波)1, Hai-Ying Li(李海盈)1
1 Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China;
2 Laboratory of Nonlinear Fiber Optics, School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
Abstract  By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional (1D) parity-time-symmetric (PT-symmetric) two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios respectively. It is found that the number and the corresponding frequencies of the extremum spontaneous PT-symmetric breaking points are dependent on the waveguide length ratio. Near the extremum breaking points, ultrastrong extraordinary transmissions are created and the maximal can arrive at, respectively, 2.4079×1014 and 4.3555×1013 in both kinds of networks. However, bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratio, whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication of PT-symmetric optical waveguide networks, which possesses great potential in designing optical amplifiers, optical energy saver devices, and special optical filters.
Keywords:  parity-time symmetry      optical waveguide network      integer broken ratios  
Received:  10 June 2019      Revised:  17 July 2019      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674107, 61475049, 11775083, 61875057, 61774062, and 61771205) and Special Funds for the Cultivation of Guangdong College Students' Scientific and Techonlogical Innovation, China (Grant No. pdjhb0139).
Corresponding Authors:  Xiang-Bo Yang     E-mail:  xbyang@scnu.edu.cn

Cite this article: 

Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈) Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios 2019 Chin. Phys. B 28 104208

[41] Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[42] Cai L, Yang X and Lu J 2011 Journal of Electromagnetic Waves and Applications 25 147
[2] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[43] Lu J, Yang X and Cai L 2012 Opt. Commun. 285 459
[3] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[44] Xiao Q, Yang X, Lu J and Liu C 2012 Opt. Commun. 285 3775
[4] Bender C M 2007 Reports on Progress in Physics 70 947
[45] Yang X, Song H and Liu T C 2013 Phys. Lett. A 377 3048
[5] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Optics Lett. 32 2632
[46] Wang Y, Yang X, Lu J, Zhang G and Liu C T 2014 Phys. Lett. A 378 1200
[6] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[47] Tang Z, Yang X, Lu J and Liu C T 2014 Opt. Commun. 331 53
[7] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[48] Tang Z X, Yang X B, Lu J and Liu T C Y 2014 Chin. Phys. B 23 044207
[8] Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
[49] Xu X, Yang X, Wang S, Liu T C and Deng D 2015 Opt. Express 23 27576
[9] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[50] Hu X, Yang X and Deng D 2017 IEEE Photon. J. 9 4700414
[10] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[51] Hu X, Yang X and Deng D 2017 Phys. Lett. A 381 1241
[11] Ding S and Wang G P 2012 Appl. Phys. Lett. 100 151913
[52] Wu J and Yang X 2019 Annalen der Physik 531 1800258
[12] Konotop V V, Shchesnovich V S and Zezyulin D A 2012 Phys. Lett. A 376 2750
[53] Wu J and Yang X 2017 Opt. Express 25 27724
[13] Bludov Y V, Konotop V V and Malomed B A 2013 Phys. Rev. A 87 013816
[54] Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
[14] Chamorro-Posada P 2014 J. Opt. Soc. Am. B 31 2728
[55] Palik E D 1998 Handbook of Optical Constants of Solids (1st Edn.) (San Diego: Academic Press)
[15] Dai C, Wang Y and Zhang X 2014 Opt. Express 22 29862
[56] Aleksandrova A, Monastyrskyi G, Flores Y and Ted Masselink W 2012 Appl. Opt. 51 6789
[16] Gupta S K and Sarma A K 2014 J. Mod. Opt. 61 227
[17] Hang C, Zezyulin D A, Huang G, Konotop V V and Malomed B A 2014 Opt. Lett. 39 5387
[18] Huang C, Ye F and Chen X 2014 Phys. Rev. A 90 043833
[19] Feijoo D, Zezyulin D A and Konotop V V 2015 Phys. Rev. E 92 062909
[20] Ge L, Makris K G, Christodoulides D N and Feng L 2015 Phys. Rev. A 92 062135
[21] Jia Y, Yan Y, Kesava S V, Gomez E D and Giebink N C 2015 ACS Photon. 2 319
[22] Alaeian H, Baum B, Jankovic V, Lawrence M and Dionne J A 2016 Phys. Rev. B 93 205439
[23] Hang C, Zezyulin D A, Huang G and Konotop V V 2016 IEEE J. Select. Top. Quantum Electron. 22 5
[24] Nguyen N B, Maier S A, Hong M and Oulton R F 2016 New J. Phys. 18 125012
[25] Walasik W and Litchinitser N M 2016 Sci. Rep. 6 19826
[26] Fu Y, Xu Y and Chen H 2016 Opt. Express 24 1648
[27] Wu B, Wu B, Xu J, Xiao J and Chen Y 2016 Opt. Express 24 16566
[28] Li H, Zhu X, Shi Z and Lai T 2017 J. Opt. Soc. Am. B 34 709
[29] Wang J, Dong H Y, Wu R P H, Mok T C and Fung K H 2017 Opt. Lett. 42 535
[30] Raju T S, Hegde T A and Kumar C N 2016 J. Opt. Soc. Am. B 33 35
[31] Cao P, Yang X, Wang S, Huang Y, Wang N, Deng D and Liu C T 2017 IEEE Photon. J. 9 1
[32] Sarisaman M and Tas M 2018 J. Opt. Soc. Am. B 35 2423
[33] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
[34] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[35] Zhang Z Q, Wong C C, Fung K K, Ho Y L, Chan W L, Kan S C, Chan T L and Cheung N 1998 Phys. Rev. Lett. 81 5540
[36] Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur J O and Zemmouri J 1998 Phys. Rev. B 57 R9388
[37] Mir A, Akjouj A, Vasseur J O, Djafari-Rouhani B, Fettouhi N, Boudouti E H E, Dobrzynski L and Zemmouri J 2003 J. Phys.: Conden. Matter 15 1593
[38] Cheung S K, Chan T L, Zhang Z Q and Chan C T 2004 Phys. Rev. B 70 125104
[39] Wang Z Y and Yang X 2007 Phys. Rev. B 76 235104
[40] Song H H and Yang X B 2010 Chin. Phys. B 19 74213
[41] Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
[42] Cai L, Yang X and Lu J 2011 Journal of Electromagnetic Waves and Applications 25 147
[43] Lu J, Yang X and Cai L 2012 Opt. Commun. 285 459
[44] Xiao Q, Yang X, Lu J and Liu C 2012 Opt. Commun. 285 3775
[45] Yang X, Song H and Liu T C 2013 Phys. Lett. A 377 3048
[46] Wang Y, Yang X, Lu J, Zhang G and Liu C T 2014 Phys. Lett. A 378 1200
[47] Tang Z, Yang X, Lu J and Liu C T 2014 Opt. Commun. 331 53
[48] Tang Z X, Yang X B, Lu J and Liu T C Y 2014 Chin. Phys. B 23 044207
[49] Xu X, Yang X, Wang S, Liu T C and Deng D 2015 Opt. Express 23 27576
[50] Hu X, Yang X and Deng D 2017 IEEE Photon. J. 9 4700414
[51] Hu X, Yang X and Deng D 2017 Phys. Lett. A 381 1241
[52] Wu J and Yang X 2019 Annalen der Physik 531 1800258
[53] Wu J and Yang X 2017 Opt. Express 25 27724
[54] Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
[55] Palik E D 1998 Handbook of Optical Constants of Solids (1st Edn.) (San Diego: Academic Press)
[56] Aleksandrova A, Monastyrskyi G, Flores Y and Ted Masselink W 2012 Appl. Opt. 51 6789
[1] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[2] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[3] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[4] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[5] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[6] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[7] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[8] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[9] Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices
Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰). Chin. Phys. B, 2017, 26(7): 074218.
[10] The contrast between defect solitons in parity–time symmetric superlattice and simple-lattice complex potentials
Hu Su-Mei(胡素梅) and Hu Wei(胡巍) . Chin. Phys. B, 2012, 21(2): 024212.
No Suggested Reading articles found!