Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104204    DOI: 10.1088/1674-1056/ab3f25
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles

Jie Han(韩杰)1, Sheng-Dong Chang(常圣东)2, Yan-Jia Lyu(吕彦佳)1, Yong Liu(刘永)1
1 State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 School of Environment, 3480 University Street, McGill University, Montréal H3A 0E9, Canada
Abstract  We design a novel all-normal flat near-zero dispersion chalcogenide photonic crystal fiber (PCF) for generating mid-infrared (MIR) supercontinuum (SC). The proposed PCF with a core made of As2Se3 glass and uniform air holes in the cladding is selectively filled with As2S5 glass. By carefully engineering the PCF with an all-normal flat near-zero dispersion profile, the anomalous-dispersion soliton effect is reduced, thus enabling broadband highly coherent SC to be generated. We also investigate the influence of the pulse parameters on the SC generation. Broadband SC covering 1.4 μm-10 μm with perfect coherence is achieved by pumping the proposed 3-cm-long PCF with 3-μm 100-fs pulses. The results provide a potential all-fiber realization of the broadband coherent MIR-SC.
Keywords:  supercontinuum generation      photonic crystal fiber      nonlinear optics  
Received:  11 April 2019      Revised:  23 July 2019      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.65.-k (Nonlinear optics)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61421002 and 61435003).
Corresponding Authors:  Jie Han     E-mail:  jiehan@std.uestc.edu.cn

Cite this article: 

Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永) Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles 2019 Chin. Phys. B 28 104204

[1] Amini-Nik S, Kraemer D, Cowan M L, Gunaratne K, Nadesan P, Alman B A and Miller R J D 2010 Plos ONE 5 el3053
[2] Salisbury J W and D'Aria D M 1994 Remote Sens. Environ. 47 345
[3] Bekman H H P T, Heuvel J C, Putten F J M and Schleijpen H M A 2004 Proc. SPIE 5615 27
[4] Steinmeyer G and Skibina J S 2014 Nat. Photon. 8 814
[5] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S and Wang R 2017 Laser Photon. Rev. 11 1700005
[6] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[7] Cimalla P, Walther J, Mittasch M and Koch E 2011 J. Biomed. Opt. 16 116020
[8] Udem T, Holzwarth R and Hansch T W 2002 Nature 416 233
[9] Al-Kadry A, Li L, Amraoui M E, North T, Messaddeq Y and Rochette M 2015 Opt. Lett. 40 4687
[10] Liu L, Cheng T, Nagasaka K, Tong H, Qin Q, Susuki T and Ohishi Y 2016 Opt. Lett. 41 392
[11] Nagasaka K, Liu L, Tuan T H, Cheng T, Matsumoto M, Tezuka H, Suzuki T and Ohishi Y 2017 J. Opt. 19 095502
[12] Jiao K, Yao J, Zhao Z, Wang X, Si N, Wang X, Chen P, Xue Z, Tian Y, Zhang B, Zhang P, Dai S, Nie Q and Wang R 2019 Opt. Express 27 2036
[13] Zhang N, Peng X, Wang Y, Dai S, Yuan Y, Su J, Li G, Zhang P, Yang P and Wang X 2019 Opt. Express 27 10311
[14] Karim M R, Ahmad H and Rahman B M A 2017 IEEE Photon. Technol. Lett. 29 1792
[15] Saini T S, Hoa N P T, Nagasaka K, Luo X, Tuan T H, Suzuki T and Ohishi Y 2018 Appl. Opt. 57 1689
[16] Nagasaka K, Liu L, Tuan T H, Cheng T, Matsumoto M, Tezuka H, Suzuki T and Ohishi Y 2017 Opt. Fiber Technol. 36 82
[17] Diouf M, Salem A B, Cherif R, Saghaei H and Wague A 2017 Appl. Opt. 56 163
[18] Li Q, Liu L, Jia Z, Qin G, Ohishi Y and Qin W 2017 J. Lightwave Technol. 35 4740
[19] Cherif R, Baili A and Zghal M 2013 Proc. SPIE 8772 87720C
[20] Lagsgaard J 2007 Opt. Express 15 16110
[21] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambrige: Cambridge University)
[22] Frosz M H 2010 Opt. Express 18 14778
[23] Cheng T, Usaki R, Duan Z, Gao W, Deng D, Liao M, Kanou Y, Matsumoto M, Misumi T, Suzuki T and Ohishi Y 2014 Opt. Express 22 3740
[24] Klocek P 1991 Handbook of Infrared Optical Materials (New York: Marcel Dekker)
[25] Henderson-Sapir O, Jackson S D and Ottaway D J 2016 Opt. Lett. 41 1676
[26] Salem A B, Cherif R and Zghal M 2011 Opt. Express 19 19955
[27] Anderson D, Desaix M, Lisak M and Quiroga-Teixeiro M L 1992 J. Opt. Soc. Am. B 9 1358
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[4] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[5] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[6] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[7] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[11] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[12] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[15] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
No Suggested Reading articles found!