Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098505    DOI: 10.1088/1674-1056/ab37f9
RAPID COMMUNICATION Prev   Next  

Manipulation of superconducting qubit with direct digital synthesis

Zhi-Yuan Li(李志远)1,2, Hai-Feng Yu(于海峰)1, Xin-Sheng Tan(谭新生)1, Shi-Ping Zhao(赵士平)2,3, Yang Yu(于扬)1
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We investigate the XY control and manipulation of the superconducting qubit state using direct digital synthesis (DDS) for the microwave pulse signal generation. The decoherence time, gate fidelity, and other qubit properties are measured and carefully characterized, and compared with the results obtained by using the traditional mixing technique for the microwave pulse generation. In particular, the qubit performance in the state manipulation with respect to the sampling rate of DDS is studied. Our results demonstrate that the present technique provides a simple and effective method for the XY control and manipulation of the superconducting qubit state. Realistic applications of the technique for the possible future scalable superconducting quantum computation are discussed.

Keywords:  superconducting qubit      direct digital synthesis      arbitrary waveform generator  
Received:  11 April 2019      Revised:  09 July 2019      Accepted manuscript online: 
PACS:  85.25.Cp (Josephson devices)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

We thank Tektronix Co. Ltd. for technical help during the experiment. Project was supported by the National Natural Science Foundation of China (Grant No. 11890704), the National Key Research and Development Program of China (Grant No. 2016YFA0301802), the National Basic Research Program of China (Grant Nos. 2015CB921104 and 2016YFA0300601), and the Key R&D Program of Guangdong Province, China (Grant No. 2018B0303326001).

Corresponding Authors:  Hai-Feng Yu, Hai-Feng Yu     E-mail:  hfyu@nju.edu.cn;meisen0103@163.com

Cite this article: 

Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬) Manipulation of superconducting qubit with direct digital synthesis 2019 Chin. Phys. B 28 098505

[1] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[2] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84 4729
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4] Grover L K 1997 Phys. Rev. Lett. 79 325
[5] Grover L K 1996 arXiv:quant-ph/9605043
[6] Miakisz K, Piotrowski E W and Sładkowski J 2006 Theoretical Computer Science 358 15
[7] Dunjko V, Taylor J M and Briegel H J 2016 Phys. Rev. Lett. 117 130501
[8] Shao Y, Gan Z, Epifanovsky E, et al. 2015 Molecular Physics 113 184
[9] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298
[10] Chao R and Reichardt B W 2018 Phys. Rev. Lett. 121 050502
[11] Baek C, Ostuka T, Tarucha S and Choi B S 2018 arXiv:1810.01029 [quant-ph]
[12] Terhal B M 2015 Rev. Mod. Phys. 87 307
[13] Islam R, Ma R, Preiss P M, Eric Tai M, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77
[14] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V and Lukin M D 2017 Nature 551 579
[15] Lund A P, Bremner M J and Ralph T C 2017 npj Quantum Information 3 15
[16] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M and Neven H 2018 Nat. Phys. 14 595
[17] Tannu S S and Qureshi M K 2018 arXiv:1805.10224[quant-ph]
[18] Preskill J 2018 Quantum 2 79
[19] Nielsen M A 2002 Phys. Lett. A 303 249
[20] Tan X, Zhang D W, Zhang Z, Yu Y, Han S and Zhu S L 2014 Phys. Rev. Lett. 112 027001
[21] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D, Wang J I J, Orlando T P, Gustavsson S and Oliver W D 2018 arXiv:1803.09813 [quant-ph]
[22] Raftery J, Vrajitoarea A, Zhang G, Leng Z, Srinivasan S J and Houck A A 2017 arXiv:1703.00942[quant-ph]
[23] Johansson J R, Nation P D and Nori F 2012 Computer Physics Communications 183 1760
[24] Kaluzny Y, Goy P, Gross M, Raimond J M and Haroche S 1983 Phys. Rev. Lett. 51 1175
[25] Stievater T H, Li X, Steel D G, Gammon D, Katzer D S, Park D, Piermarocchi C and Sham L J 2001 Phys. Rev. Lett. 87 133603
[26] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
[27] Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501
[28] Chen Z, Kelly J, Quintana C, et al. 2016 Phys. Rev. Lett. 116 020501
[29] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[30] Chow J M, Gambetta J M, Tornberg L, Koch J, Bishop L S, Houck A A, Johnson B R, Frunzio L, Girvin S M and Schoelkopf R J 2009 Phys. Rev. Lett. 102 090502
[31] Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504
[32] Harper R, Hincks I, Ferrie C, Flammia S T and Wallman J J 2019 arXiv:1901.00535[quant-ph]
[33] Shannon C E 1949 Proceedings of the IRE 37 10
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[4] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[5] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[6] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[7] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[8] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[9] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[10] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[11] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[12] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[13] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[14] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
[15] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
No Suggested Reading articles found!