|
|
Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes |
Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨) |
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China |
|
|
Abstract An optical lattice could be produced either by splitting an input light (splitting scheme) or by reflecting the input light by a mirror (retro-reflected scheme). We study quantum dynamical properties of an atomic Bose-Einstein condensate (BEC) in the two schemes. Adopting a mean field theory and neglecting collision interactions between atoms, we find that the momentum and spatial distributions of BEC are always symmetric in the splitting scheme which, however, are asymmetric in the retro-reflected scheme. The reason for this difference is due to the local field effect. Furthermore, we propose an effective method to avoid asymmetric diffraction.
|
Received: 24 February 2019
Revised: 08 June 2019
Accepted manuscript online:
|
PACS:
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764012, 11565011, 11665010, 61864002, and 11805047) and the Natural Science Foundation of Hainan Province, China (Grant No. 20165197). |
Corresponding Authors:
Jiang Zhu
E-mail: aresjiangzhu@163.com
|
Cite this article:
Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨) Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes 2019 Chin. Phys. B 28 093701
|
[42] |
Mendonça J T and Kaiser R 2012 Phys. Rev. Lett. 108 033001
|
[1] |
Lan Z, Zhao Y, Barker P F and Lu W 2010 Phys. Rev. A 81 013419
|
[43] |
Ostermann S, Piazza F and Ritsch H 2016 Phys. Rev. X 6 021026
|
[2] |
Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 123602
|
[44] |
Ovchinnikov Y B, Müller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284
|
[3] |
Wei C H and Yan S H 2017 Chin. Phys. B 26 080701
|
[45] |
Morice O, Castin Y and Dalibard J 1995 Phys. Rev. A 51 3896
|
[4] |
Reichsöllner L, Schindewolf A, Takekoshi T, Grimm R and Nägerl H 2017 Phys. Rev. Lett. 118 073201
|
[46] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[5] |
McDonald M, McGuyer B H, Apfelbeck F, Lee C H, Majewska I, Moszynski R and Zelevinsky T 2016 Nature 535 122
|
[47] |
Karpov S and Stolyarov S 1993 Phys.-Usp. 36 1
|
[6] |
Notermans R P M J W, Rengelink R J and Vassen W 2016 Phys. Rev. Lett. 117 213001
|
[7] |
McGuyer B H, McDonald M, Iwata G Z, Tarallo M G, Grier A T, Apfelbeck F and Zelevinsky T 2015 New J. Phys. 17 055004
|
[8] |
Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
|
[9] |
Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
|
[10] |
Chen N, Zhou M, Chen H Q, Fang S, Huang L Y, Zhang X H, Gao Q, Jiang Y Y, Bi Z Y, Ma L S and Xu X Y 2013 Chin. Phys. B 22 090601
|
[11] |
Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
|
[12] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[13] |
Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
|
[14] |
Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401
|
[15] |
Hamner C, Zhang Y P, Khamehchi M A, Davis M J and Engels P 2015 Phys. Rev. Lett. 114 070401
|
[16] |
Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lämmerzahl C, Ertmer W, Schleich W P and Rasel E M 2016 Phys. Rev. Lett. 117 203003
|
[17] |
Cladé P, Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L and Biraben F 2006 Phys. Rev. Lett. 96 033001
|
[18] |
Jürgensen O, Meinert F, Mark M J, Nägerl H and Lühmann D 2014 Phys. Rev. Lett. 113 193003
|
[19] |
Tie L and Xue J K 2011 Chin. Phys. B 20 120311
|
[20] |
Kolovsky A R 2018 Phys. Rev. A 98 013603
|
[21] |
Kolovsky A R 2011 Europhys. Lett. 93 20003
|
[22] |
Roscilde T 2014 Phys. Rev. Lett. 112 110403
|
[23] |
Parker C V, Ha L C and Chin C 2013 Nature Phys. 9 769
|
[24] |
Zheng W, Liu B, Miao J, Chin C and Zhai H 2014 Phys. Rev. Lett. 113 155303
|
[25] |
Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Sarma S D and Bloch I 2018 Phys. Rev. Lett. 120 160404
|
[26] |
Adhikari S K and Salasnich L 2009 Phys. Rev. A 80 023606
|
[27] |
Salger T, Grossert C, Kling S and Weitz M 2011 Phys. Rev. Lett. 107 240401
|
[28] |
Li T C, Kelkar H, Medellin D and Raizen M G 2008 Opt. Express 16 5465
|
[29] |
Fallani L, Fort C, Lye J E and Inguscio M 2005 Opt. Express 13 4303
|
[30] |
Wilkinson S R, Bharucha C F, Fischer M C, Madison K W, Morrow P R, Niu Q, Sundaram B and Raizen M G 1997 Nature 387 575
|
[31] |
Wilkinson S R, Bharucha C F, Madison K W, Niu Q and Raizen M G 1996 Phys. Rev. Lett. 76 4512
|
[32] |
Verkerk P, Meacher D R, Coates A B, Courtois J Y, Guibal S, Lounis B, Salomon C and Grynberg G 1994 Europhys. Lett. 26 171
|
[33] |
Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and Kuhr S 2015 Nature Phys. 11 738
|
[34] |
Wirth G, Olschläger M and Hemmerich A 2011 Nature Phys. 7 171
|
[35] |
Straatsma C J E, Ivory M K, Duggan J, Ramirez-Serrano J, Anderson D Z and Salim E A 2015 Opt. Lett. 40 3368
|
[36] |
Poli N, Tarallo M G, Schioppo M, Oates C W and Tino G M 2009 Appl. Phys. B 97 27
|
[37] |
Dahan M B, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
|
[38] |
Martin P J, Oldaker B G, Miklich A H and Pritchard D E 1988 Phys. Rev. Lett. 60 515
|
[39] |
Zhu J, Dong G J, Shneider M N and Zhang W P 2011 Phys. Rev. Lett. 106 210403
|
[40] |
Dong G J, Zhu J, Zhang W P and Malomed B A 2013 Phys. Rev. Lett. 110 250401
|
[41] |
Robb G R M, Tesio E, Oppo G L, Firth W J, Ackemann T and Bonifacio R 2015 Phys. Rev. Lett. 114 173903
|
[42] |
Mendonça J T and Kaiser R 2012 Phys. Rev. Lett. 108 033001
|
[43] |
Ostermann S, Piazza F and Ritsch H 2016 Phys. Rev. X 6 021026
|
[44] |
Ovchinnikov Y B, Müller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284
|
[45] |
Morice O, Castin Y and Dalibard J 1995 Phys. Rev. A 51 3896
|
[46] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[47] |
Karpov S and Stolyarov S 1993 Phys.-Usp. 36 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|