Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093701    DOI: 10.1088/1674-1056/ab3448
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes

Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨)
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Abstract  

An optical lattice could be produced either by splitting an input light (splitting scheme) or by reflecting the input light by a mirror (retro-reflected scheme). We study quantum dynamical properties of an atomic Bose-Einstein condensate (BEC) in the two schemes. Adopting a mean field theory and neglecting collision interactions between atoms, we find that the momentum and spatial distributions of BEC are always symmetric in the splitting scheme which, however, are asymmetric in the retro-reflected scheme. The reason for this difference is due to the local field effect. Furthermore, we propose an effective method to avoid asymmetric diffraction.

Keywords:  optical lattice      Bose-Einstein condensate      local field effect  
Received:  24 February 2019      Revised:  08 June 2019      Accepted manuscript online: 
PACS:  37.10.Jk (Atoms in optical lattices)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  42.25.Fx (Diffraction and scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11764012, 11565011, 11665010, 61864002, and 11805047) and the Natural Science Foundation of Hainan Province, China (Grant No. 20165197).

Corresponding Authors:  Jiang Zhu     E-mail:  aresjiangzhu@163.com

Cite this article: 

Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨) Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes 2019 Chin. Phys. B 28 093701

[42] Mendonça J T and Kaiser R 2012 Phys. Rev. Lett. 108 033001
[1] Lan Z, Zhao Y, Barker P F and Lu W 2010 Phys. Rev. A 81 013419
[43] Ostermann S, Piazza F and Ritsch H 2016 Phys. Rev. X 6 021026
[2] Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S and Barker P F 2015 Phys. Rev. Lett. 114 123602
[44] Ovchinnikov Y B, Müller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284
[3] Wei C H and Yan S H 2017 Chin. Phys. B 26 080701
[45] Morice O, Castin Y and Dalibard J 1995 Phys. Rev. A 51 3896
[4] Reichsöllner L, Schindewolf A, Takekoshi T, Grimm R and Nägerl H 2017 Phys. Rev. Lett. 118 073201
[46] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[5] McDonald M, McGuyer B H, Apfelbeck F, Lee C H, Majewska I, Moszynski R and Zelevinsky T 2016 Nature 535 122
[47] Karpov S and Stolyarov S 1993 Phys.-Usp. 36 1
[6] Notermans R P M J W, Rengelink R J and Vassen W 2016 Phys. Rev. Lett. 117 213001
[7] McGuyer B H, McDonald M, Iwata G Z, Tarallo M G, Grier A T, Apfelbeck F and Zelevinsky T 2015 New J. Phys. 17 055004
[8] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[9] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
[10] Chen N, Zhou M, Chen H Q, Fang S, Huang L Y, Zhang X H, Gao Q, Jiang Y Y, Bi Z Y, Ma L S and Xu X Y 2013 Chin. Phys. B 22 090601
[11] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[12] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[13] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[14] Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401
[15] Hamner C, Zhang Y P, Khamehchi M A, Davis M J and Engels P 2015 Phys. Rev. Lett. 114 070401
[16] Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lämmerzahl C, Ertmer W, Schleich W P and Rasel E M 2016 Phys. Rev. Lett. 117 203003
[17] Cladé P, Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L and Biraben F 2006 Phys. Rev. Lett. 96 033001
[18] Jürgensen O, Meinert F, Mark M J, Nägerl H and Lühmann D 2014 Phys. Rev. Lett. 113 193003
[19] Tie L and Xue J K 2011 Chin. Phys. B 20 120311
[20] Kolovsky A R 2018 Phys. Rev. A 98 013603
[21] Kolovsky A R 2011 Europhys. Lett. 93 20003
[22] Roscilde T 2014 Phys. Rev. Lett. 112 110403
[23] Parker C V, Ha L C and Chin C 2013 Nature Phys. 9 769
[24] Zheng W, Liu B, Miao J, Chin C and Zhai H 2014 Phys. Rev. Lett. 113 155303
[25] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Sarma S D and Bloch I 2018 Phys. Rev. Lett. 120 160404
[26] Adhikari S K and Salasnich L 2009 Phys. Rev. A 80 023606
[27] Salger T, Grossert C, Kling S and Weitz M 2011 Phys. Rev. Lett. 107 240401
[28] Li T C, Kelkar H, Medellin D and Raizen M G 2008 Opt. Express 16 5465
[29] Fallani L, Fort C, Lye J E and Inguscio M 2005 Opt. Express 13 4303
[30] Wilkinson S R, Bharucha C F, Fischer M C, Madison K W, Morrow P R, Niu Q, Sundaram B and Raizen M G 1997 Nature 387 575
[31] Wilkinson S R, Bharucha C F, Madison K W, Niu Q and Raizen M G 1996 Phys. Rev. Lett. 76 4512
[32] Verkerk P, Meacher D R, Coates A B, Courtois J Y, Guibal S, Lounis B, Salomon C and Grynberg G 1994 Europhys. Lett. 26 171
[33] Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and Kuhr S 2015 Nature Phys. 11 738
[34] Wirth G, Olschläger M and Hemmerich A 2011 Nature Phys. 7 171
[35] Straatsma C J E, Ivory M K, Duggan J, Ramirez-Serrano J, Anderson D Z and Salim E A 2015 Opt. Lett. 40 3368
[36] Poli N, Tarallo M G, Schioppo M, Oates C W and Tino G M 2009 Appl. Phys. B 97 27
[37] Dahan M B, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
[38] Martin P J, Oldaker B G, Miklich A H and Pritchard D E 1988 Phys. Rev. Lett. 60 515
[39] Zhu J, Dong G J, Shneider M N and Zhang W P 2011 Phys. Rev. Lett. 106 210403
[40] Dong G J, Zhu J, Zhang W P and Malomed B A 2013 Phys. Rev. Lett. 110 250401
[41] Robb G R M, Tesio E, Oppo G L, Firth W J, Ackemann T and Bonifacio R 2015 Phys. Rev. Lett. 114 173903
[42] Mendonça J T and Kaiser R 2012 Phys. Rev. Lett. 108 033001
[43] Ostermann S, Piazza F and Ritsch H 2016 Phys. Rev. X 6 021026
[44] Ovchinnikov Y B, Müller J H, Doery M R, Vredenbregt E J D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284
[45] Morice O, Castin Y and Dalibard J 1995 Phys. Rev. A 51 3896
[46] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[47] Karpov S and Stolyarov S 1993 Phys.-Usp. 36 1
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[9] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[10] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[11] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[12] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[15] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
No Suggested Reading articles found!