|
|
Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter |
Ge-Hai Du(杜舸海)1,2, Hong-Wei Li(李宏伟)1,2, Yang Wang(汪洋)1,2, Wan-Su Bao(鲍皖苏)1,2 |
1 Henan Key Laboratory of Quantum Information and Cryptography, PLA SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The unconditional security of quantum key distribution (QKD) can be guaranteed by the nature of quantum physics. Compared with the traditional two-dimensional BB84 QKD protocol, high-dimensional quantum key distribution (HD-QKD) can be applied to generate much more secret key. Nonetheless, practical imperfections in realistic systems can be exploited by the third party to eavesdrop the secret key. The practical beam splitter has a correlation with wavelength, where different wavelengths have different coupling ratios. Using this property, we propose a wavelength-dependent attack towards time-bin high-dimensional QKD system. What is more, we demonstrate that this attacking protocol can be applied to arbitrary d-dimensional QKD system, and higher-dimensional QKD system is more vulnerable to this attacking strategy.
|
Received: 16 May 2019
Revised: 18 June 2019
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302600) and the National Natural Science Foundation of China (Grant No. 61675235). |
Corresponding Authors:
Hong-Wei Li, Hong-Wei Li
E-mail: lihow@ustc.edu.cn;bws@qiclab.cn
|
Cite this article:
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏) Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter 2019 Chin. Phys. B 28 090301
|
[41] |
Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 052309
|
[1] |
Bennett C H and Brassard G 1984 Proceddings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999, Bangalore, India (IEEE, New York, 1984) p. 175
|
[42] |
Islam N T, Lim C C W, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 e1701491
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[43] |
Islam N T, Cahall C, Aragoneses A, Lezama A, Kim J and Gauthier D J 2017 Phys. Rev. Appl. 7 044010
|
[3] |
Lo H K and Chau H F 1999 Science 283 2050
|
[44] |
Eisenmann M and Weidel E 1991 J. Lightwave Technol. 9 853
|
[4] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[45] |
Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
|
[5] |
Renner R 2005 Security of quantum key distribution, Ph. D. Dissertation (Zurich:Swiss Federal Institute of Technology Zurich)
|
[46] |
Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
|
[6] |
Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2019 Phys. Rev. X 9 021046
|
[7] |
Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
|
[8] |
Wu S H, Li Y, Feng L P, Zeng X L, Li W, Qiu J F, Zuo Y, Hong X B, Yu H, Chen R, Giles I P and Wu J 2018 Opt. Lett. 43 2130
|
[9] |
He D Y, Wang S, Chen W, Yin Z Q, Qian Y J, Zhou Z, Guo G C and Han Z F 2017 Appl. Phys. Lett. 110 111104
|
[10] |
Fung C H F, Qi B, Tamaki K and Lo H K 2006 Phys. Rev. A 75 032314
|
[11] |
Xu F H, Qi B and Lo H K 2010 New J. Phys 12 113026
|
[12] |
Qi B, Fung C H F, Lo H K and Ma X F 2005 Quantum Inf. Comput. 7 0073
|
[13] |
Qi B, Fung C H F, Zhao Y, Ma X F, Tamaki K, Chen C and Lo H K 2007 Quantum Communications and Quantum Imaging V 6710 730
|
[14] |
Makarov V and Hjelme D R 2005 J. Mod. Opt. 52 691
|
[15] |
Makarov V, Anisimov A and Skaar J 2007 Phys. Rev. A 74 022313
|
[16] |
Makarov V and Skaar J 2008 Quantum Inf. Comput. 8 622
|
[17] |
Makarov V 2012 New J. Phys. 11 065003
|
[18] |
Lydersen L, Akhlaghi M K, Majedi A H, Skaar J and Makarov V 2011 New J. Phys. 13 113042
|
[19] |
Gerhardt I, Liu Q, L-Linares A, Skaar J, Kurtsiefer C and Makarov V 2010 Nat. Commun. 2 349
|
[20] |
Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
|
[21] |
Huang A, Sajeed S, Chaiwongkhot P, Soucarros M, Legré M and Makarov V 2016 IEEE J. Quantum Electron. 52 8000211
|
[22] |
Qian Y J, He D Y, Wang S, Chen W, Yin Z Q, Guo G C and Han Z F 2018 Phys. Rev. Appl. 10 064062
|
[23] |
Zhang L, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 110504
|
[24] |
Tittel W, Brendel J, Zbinden H and Gisin N 2000 Phys. Rev. Lett. 84 4737
|
[25] |
Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2014 Phys. Rev. A 88 032305
|
[26] |
Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
|
[27] |
Chau H F, Yin Z Q, Wang S, Chen W and Han Z F 2019 Quantum Inf. Proc. 18 138
|
[28] |
Ali-Khan I, Broadbent C J and Howell J C 2007 Phys. Rev. Lett. 98 060503
|
[29] |
Mower J, Desjardins P, Shapiro J H and Englund D R 2012 Phys. Rev. A 87 062322
|
[30] |
Zhang Z S, Mower J, Englund D R, Wong F N and Shapiro J H 2014 Phys. Rev. Lett. 112 120506
|
[31] |
Hwang W Y 2003 Phys. Rev. Lett. 91 057901
|
[32] |
Wang X B 2005 Phys. Rev. Lett. 94 230503
|
[33] |
Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[34] |
Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330.
|
[35] |
Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
|
[36] |
Bao H Z, Bao W S, Wang Y, Zhou C and Chen R K 2016 J. Phys. A:Math. Theor. 49 205301
|
[37] |
Niu M Y, Xu F H, Furrer F and Shapiro J H 2016 Phys. Rev. A 94 052323
|
[38] |
Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A 84 062308
|
[39] |
Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C and Han Z F 2013 Phys. Rev. A 87 062329
|
[40] |
Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2014 Phys. Rev. A 89 4
|
[41] |
Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 052309
|
[42] |
Islam N T, Lim C C W, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 e1701491
|
[43] |
Islam N T, Cahall C, Aragoneses A, Lezama A, Kim J and Gauthier D J 2017 Phys. Rev. Appl. 7 044010
|
[44] |
Eisenmann M and Weidel E 1991 J. Lightwave Technol. 9 853
|
[45] |
Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
|
[46] |
Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|