Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090301    DOI: 10.1088/1674-1056/ab343c
GENERAL Prev   Next  

Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter

Ge-Hai Du(杜舸海)1,2, Hong-Wei Li(李宏伟)1,2, Yang Wang(汪洋)1,2, Wan-Su Bao(鲍皖苏)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, PLA SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

The unconditional security of quantum key distribution (QKD) can be guaranteed by the nature of quantum physics. Compared with the traditional two-dimensional BB84 QKD protocol, high-dimensional quantum key distribution (HD-QKD) can be applied to generate much more secret key. Nonetheless, practical imperfections in realistic systems can be exploited by the third party to eavesdrop the secret key. The practical beam splitter has a correlation with wavelength, where different wavelengths have different coupling ratios. Using this property, we propose a wavelength-dependent attack towards time-bin high-dimensional QKD system. What is more, we demonstrate that this attacking protocol can be applied to arbitrary d-dimensional QKD system, and higher-dimensional QKD system is more vulnerable to this attacking strategy.

Keywords:  high-dimensional quantum key distribution      beam splitter      wavelength attack  
Received:  16 May 2019      Revised:  18 June 2019      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302600) and the National Natural Science Foundation of China (Grant No. 61675235).

Corresponding Authors:  Hong-Wei Li, Hong-Wei Li     E-mail:  lihow@ustc.edu.cn;bws@qiclab.cn

Cite this article: 

Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏) Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter 2019 Chin. Phys. B 28 090301

[41] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 052309
[1] Bennett C H and Brassard G 1984 Proceddings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999, Bangalore, India (IEEE, New York, 1984) p. 175
[42] Islam N T, Lim C C W, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 e1701491
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[43] Islam N T, Cahall C, Aragoneses A, Lezama A, Kim J and Gauthier D J 2017 Phys. Rev. Appl. 7 044010
[3] Lo H K and Chau H F 1999 Science 283 2050
[44] Eisenmann M and Weidel E 1991 J. Lightwave Technol. 9 853
[4] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[45] Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
[5] Renner R 2005 Security of quantum key distribution, Ph. D. Dissertation (Zurich:Swiss Federal Institute of Technology Zurich)
[46] Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
[6] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2019 Phys. Rev. X 9 021046
[7] Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[8] Wu S H, Li Y, Feng L P, Zeng X L, Li W, Qiu J F, Zuo Y, Hong X B, Yu H, Chen R, Giles I P and Wu J 2018 Opt. Lett. 43 2130
[9] He D Y, Wang S, Chen W, Yin Z Q, Qian Y J, Zhou Z, Guo G C and Han Z F 2017 Appl. Phys. Lett. 110 111104
[10] Fung C H F, Qi B, Tamaki K and Lo H K 2006 Phys. Rev. A 75 032314
[11] Xu F H, Qi B and Lo H K 2010 New J. Phys 12 113026
[12] Qi B, Fung C H F, Lo H K and Ma X F 2005 Quantum Inf. Comput. 7 0073
[13] Qi B, Fung C H F, Zhao Y, Ma X F, Tamaki K, Chen C and Lo H K 2007 Quantum Communications and Quantum Imaging V 6710 730
[14] Makarov V and Hjelme D R 2005 J. Mod. Opt. 52 691
[15] Makarov V, Anisimov A and Skaar J 2007 Phys. Rev. A 74 022313
[16] Makarov V and Skaar J 2008 Quantum Inf. Comput. 8 622
[17] Makarov V 2012 New J. Phys. 11 065003
[18] Lydersen L, Akhlaghi M K, Majedi A H, Skaar J and Makarov V 2011 New J. Phys. 13 113042
[19] Gerhardt I, Liu Q, L-Linares A, Skaar J, Kurtsiefer C and Makarov V 2010 Nat. Commun. 2 349
[20] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[21] Huang A, Sajeed S, Chaiwongkhot P, Soucarros M, Legré M and Makarov V 2016 IEEE J. Quantum Electron. 52 8000211
[22] Qian Y J, He D Y, Wang S, Chen W, Yin Z Q, Guo G C and Han Z F 2018 Phys. Rev. Appl. 10 064062
[23] Zhang L, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 110504
[24] Tittel W, Brendel J, Zbinden H and Gisin N 2000 Phys. Rev. Lett. 84 4737
[25] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2014 Phys. Rev. A 88 032305
[26] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[27] Chau H F, Yin Z Q, Wang S, Chen W and Han Z F 2019 Quantum Inf. Proc. 18 138
[28] Ali-Khan I, Broadbent C J and Howell J C 2007 Phys. Rev. Lett. 98 060503
[29] Mower J, Desjardins P, Shapiro J H and Englund D R 2012 Phys. Rev. A 87 062322
[30] Zhang Z S, Mower J, Englund D R, Wong F N and Shapiro J H 2014 Phys. Rev. Lett. 112 120506
[31] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[32] Wang X B 2005 Phys. Rev. Lett. 94 230503
[33] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[34] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330.
[35] Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
[36] Bao H Z, Bao W S, Wang Y, Zhou C and Chen R K 2016 J. Phys. A:Math. Theor. 49 205301
[37] Niu M Y, Xu F H, Furrer F and Shapiro J H 2016 Phys. Rev. A 94 052323
[38] Li H W, Wang S, Huang J Z, Chen W, Yin Z Q, Li F Y, Zhou Z, Liu D, Zhang Y, Guo G C, Bao W S and Han Z F 2011 Phys. Rev. A 84 062308
[39] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C and Han Z F 2013 Phys. Rev. A 87 062329
[40] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2014 Phys. Rev. A 89 4
[41] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 052309
[42] Islam N T, Lim C C W, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 e1701491
[43] Islam N T, Cahall C, Aragoneses A, Lezama A, Kim J and Gauthier D J 2017 Phys. Rev. Appl. 7 044010
[44] Eisenmann M and Weidel E 1991 J. Lightwave Technol. 9 853
[45] Sheridan L and Scarani V 2010 Phys. Rev. A 82 030301
[46] Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
[1] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[2] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[3] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[4] Utra-thin anisotropic transmitting metasurface for polarization beam splitter application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(8): 084101.
[5] Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Kun Zhang(张昆), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(10): 104101.
[6] Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-corephotonic crystal fiber
Fan Zhen-Kai (范振凯), Li Shu-Guang (李曙光), Fan Yu-Qiu (范玉秋), Zhang Wan (张婉), An Guo-Wen (安国文), Bao Ya-Jie (鲍亚杰). Chin. Phys. B, 2014, 23(9): 094212.
[7] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[8] Designing of a polarization beam splitter for the wavelength of1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion
Bao Ya-Jie (鲍亚杰), Li Shu-Guang (李曙光), Zhang Wan (张婉), An Guo-Wen (安国文), Fan Zhen-Kai (范振凯). Chin. Phys. B, 2014, 23(10): 104218.
[9] A novel optical beam splitter based on photonic crystal with hybrid lattices
Zhu Qing-Yi(朱清溢), Fu Yong-Qi(付永启), Hu De-Qing(胡德清), and Zhang Zhi-Min(章志敏) . Chin. Phys. B, 2012, 21(6): 064220.
[10] Controlling the self-collimation characteristics of near-infrared two-dimensional metallic photonic crystal
Feng Shuai (冯帅), Ren Cheng (任承), Wang Wen-Zhong (王文忠), Wang Yi-Quan (王义全 ). Chin. Phys. B, 2012, 21(11): 114212.
[11] A new bipartite entangled state describing the parametric down-conversion process and its applications in quantum optics
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Zhang Xiao-Yan (张晓燕). Chin. Phys. B, 2012, 21(10): 100305.
[12] Four-mode coherent-entangled state and its application
Li Hong-Qi(李洪奇), Ren Ting-Qi(任廷琦), Zhang Yun-Hai(张运海), and Xu Xing-Lei(徐兴磊) . Chin. Phys. B, 2012, 21(1): 010305.
[13] Some applications of a new coherent-entangled state in two-mode Fock space
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2011, 20(5): 050303.
[14] Broadband non-polarizing beam splitter based on guided mode resonance effect
Ma Jian-Yong(麻健勇), Xu Cheng(许程), Qiang Ying-Huai(强颖怀), and Zhu Ya-Bo(朱亚波) . Chin. Phys. B, 2011, 20(10): 104209.
[15] Optimal design of sub-wavelength metal rectangular gratings for polarizing beam splitter based on effective medium theory
Zhao Hua-Jun(赵华君),Peng Yong-Jun(彭拥军),Tan Ju(谭菊) Liao Chang-Rong(廖长荣),Li Peng(李鹏), and Ren Xiao-Xia(任晓霞) . Chin. Phys. B, 2009, 18(12): 5326-5330.
No Suggested Reading articles found!