|
|
Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures |
Jun Zhou(周俊)1,2, Jian-Shuo Zhang(张建烁)2, Guo-Yu Xian(冼国裕)2, Qi Qi(齐琦)2, Shang-Zhi Gu(顾尚志)2, Cheng-Min Shen(申承民)2, Zhao-Hua Cheng(成昭华)2, Sheng-Tai He(何声太)1, Hai-Tao Yang(杨海涛)2 |
1 School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Metal-semiconductor Janus nanostructures with asymmetry and directionality have recently aroused significant interest, both in fundamental light-matter interactions mechanism and in technological applications. Here we report the synthesis of different Au-ZnO Janus nanostructures via a facile one-pot colloid method. The growth mechanism is revealed by a series of designed synthesis experiments. The light absorption properties are determined by both the decrease of dipole oscillations of the free electrons and the plasmon-induced hot-electron transfer. Moreover, the finite-difference time-domain (FDTD) simulation method is used to elucidate the electric field distributions of these Janus nanostructures.
|
Received: 29 May 2019
Revised: 11 June 2019
Accepted manuscript online:
|
PACS:
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
47.54.Bd
|
(Theoretical aspects)
|
|
47.54.Jk
|
(Materials science applications)
|
|
52.38.-r
|
(Laser-plasma interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370 and 51471185) and the National Key Research and Development Program of China (Grant Nos. 2016YFJC020013 and 2018FYA0305800). |
Corresponding Authors:
Sheng-Tai He, Hai-Tao Yang
E-mail: sht-he@tjpu.edu.cn;htyang@iphy.ac.cn
|
Cite this article:
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛) Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures 2019 Chin. Phys. B 28 083301
|
[1] |
Wang D S and Li Y D 2010 J. Am. Chem. Soc. 132 6280
|
[2] |
Zhang J T, Tang Y, Lee K and Ouyang M 2010 Nature 466 91
|
[3] |
Kwak J, Bae W K, Zorn M, Woo H, Yoon H, Lim J, Kang S W, Weber S, Butt H J, Zentel R, Lee S, Char K and Lee C 2009 Adv. Mater. 21 5002
|
[4] |
Dixit T, Palani I A and Singh V 2016 Mater. Lett. 181 183
|
[5] |
Wu S H, Chan C H, Chien C H, Yaseen M T, Liang C T and Chang Y C 2016 Appl. Phys. Lett. 108 041104
|
[6] |
Walther A and Müller A H E 2013 Chem. Rev. 113 5194
|
[7] |
Li P, Wei Z, Wu T, Peng Q and Li Y D 2011 J. Am. Chem. Soc. 133 5660
|
[8] |
Chen Y Z, Zeng D Q, Zhang K, Lu A L, Wang L S and Peng D L 2014 Nanoscale 6 874
|
[9] |
Zeng D Q, Gong P Y, Chen Y Z, Wang C G and Peng D L 2015 Mater. Lett. 161 379
|
[10] |
Liu L P, Yang H T and Ren X 2015 Nanoscale 7 5147
|
[11] |
Schladt T D, Shukoor M I, Schneider K, Tahir M N, Natalio F, Ament I, Becker J, Jochum F D, Weber, Khler S O, Theato P, Schreiber L M, Snnichsen C, Schrder H C, Muller W E G and Tremel W G 2010 Angew. Chem. Int. Ed. 49 3976
|
[12] |
Wanga P L, Linc Z Y and Su X O 2017 Nano Today 12 64
|
[13] |
Juste J P, Santos I P, Liz L M and Mulvaney P 2005 Coordination Chemistry Reviews 249 1870
|
[14] |
Wu X F, Song H Y, Yoon J M, Yu Y T and Chen F Y 2009 Langmuir 25 6438
|
[15] |
Lee M K, Kim T G, Kim W and Sung Y M 2008 J. Phys. Chem. C 112 10079
|
[16] |
Ding W, Chen Y H and Li Z Y 2014 Chin. Phys. B 23 037301
|
[17] |
Xie S X, Li H J, Zhou X, Xu H Q and Fu S L 2010 Chin. Phys. B 19 077803
|
[18] |
Averitt R D, Sarkar D and Halas N J 1997 Phys. Rev. Lett. 78 4217
|
[19] |
Alvarez-Puebla R, Liz-Marzán L M and García de Abajo F J 2010 J. Phys. Chem. Lett. 1 2428
|
[20] |
Castillo A S, Hermo M C, Gonzalez B R, Lorenzo M P, Wang Z M, Kong X T, Govorov A O and Duarte M A C 2016 J. Phys. Chem. C 120 11690
|
[21] |
Das S N, Choi J H, Kar J P, Moon K J, Lee T and Myounga J M 2010 Appl. Phys. Lett. 96 092111
|
[22] |
Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
|
[23] |
Zhang P, Wang T and Gong J L 2015 Adv. Mater. 27 5328
|
[24] |
Ingram D B and Linic S J 2011 J. Am. Chem. Soc. 133 5202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|