CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Micron-sized diamond particles containing Ge-V and Si-V color centers |
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君) |
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
|
|
Abstract Micron-sized diamond particles containing germanium-vacancy (Ge-V) color centers with a zero-photon line (ZPL) around 602.3 nm are successfully grown using hot filament chemical vapor deposition. The crystal morphology changes from icosahedron to truncated octahedron and decahedron, finally becomes spherical with the growth pressure increase. Due to the chamber containing Si, all diamond particles contain silicon-vacancy (Si-V) color centers. High growth pressure contributes to the formation of Ge-V and Si-V in diamonds. With prolonging growth time, the change in the full width at half maximum (FWHM) of the diamond peak is small, which shows that the concentration of Ge-V and Si-V centers nearly maintains a constant. The FWHM of the Ge-V ZPL is around 4 nm, which is smaller than that reported, suggesting that the Ge-V center has a more perfect structure. Ge-V and Si-V photoluminescence (PL) intensities increase with the prolonging growth time due to the increased diamond content and reduced content of sp2-bonded carbon and trans-polyacetylene. In summary, increasing the growth pressure and prolonging the growth time are beneficial to enhance the Ge-V and Si-V PL intensities.
|
Received: 04 April 2019
Revised: 24 April 2019
Accepted manuscript online:
|
PACS:
|
61.72.jn
|
(Color centers)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
81.05.ug
|
(Diamond)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004 and LY18E020013), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and the Key Project of the National Natural Science Foundation of China (Grant No. U1809210). |
Corresponding Authors:
Xiao-Jun Hu
E-mail: huxj@zjut.edu.cn
|
Cite this article:
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君) Micron-sized diamond particles containing Ge-V and Si-V color centers 2019 Chin. Phys. B 28 076103
|
[34] |
Sails S R, Gardiner D J, Bowden M, Savage J and Rodway D 1996 Diamond Relat. Mater. 5 589
|
[1] |
Kuhn A, ennrich M H and Rempe G 2002 Phys. Rev. Lett. 89 067901
|
[2] |
Aharonovich I, Greentree A D and Prawer S 2011 Nat. Photon. 5 397
|
[3] |
Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
|
[4] |
Mei Y S, Fan D, Lu S H, Shen Y G and Hu X J 2016 J. Appl. Phys. 120 225107
|
[5] |
Christian H, Tina M, Victor W, Becker J N, Benjamin P, Hadwig S, Doris S N, Adam G, Maze J R and Mete A 2014 Phys. Rev. Lett. 112 036405
|
[6] |
Rabeau J R, Stacey A, Rabeau A, Prawer S, Jelezko F, Mirza I and Wrachtrup J 2007 Nano Lett. 7 3433
|
[7] |
Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1
|
[8] |
Aharonovich I 2014 Nat. Photon. 8 818
|
[9] |
Jelezko F and Wrachtrup J 2006 Phys. Status Solidi. 203 3207
|
[10] |
Rogers L J, Jahnke K D, Teraji T, Marseglia L, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J and Mcguinness L P 2014 Nat. Commun. 5 4739
|
[11] |
Neu E, Albrecht R, Fischer M, Gsell S, Schreck M and Becher C 2012 Phys. Rev. B 85 245207
|
[12] |
Vlasov I I, Barnard A S, Ralchenko V G, Lebedev O I, Kanzyuba M V, Saveliev A V, Konov V I and Goovaertsn E 2009 Adv. Mater. 21 808
|
[13] |
Mei Y S, Chen C K, Fan D, Jiang M Y, Li X and Hu X J 2019 Nanoscale 11 656
|
[14] |
Schröder T, Mouradian S L, Zheng J, Trusheim M E, Walsh M, Chen E H, Li L, Bayn I and Englund D 2016 J. Opt. Soc. Am. B 33 B65
|
[15] |
Goss J P, Jones R, Breuer S J, Briddon P R and Ö S 1996 Phys. Rev. Lett. 77 3041
|
[16] |
Sternschulte H, Thonke K, Sauer R, Münzinger P C and Michler P 1994 Phys. Rev. B 50 14554
|
[17] |
Müller T, Hepp C, Pingault B, Neu E, Gsell S, Schreck M, Sternschulte H, Steinmüllernethl D, Becher C and Atatüre M 2014 Nat. Commun. 5 3328
|
[18] |
Palyanov Y N, Kupriyanov I N, Borzdov Y M and Surovtsev N V 2015 Sci. Rep. 5 14789
|
[19] |
Goss J P, Briddon P R, Rayson M J, Sque S J and Jones R 2005 Phys. Rev. B. 72 035214
|
[20] |
Siyushev P, Metsch M H, Ijaz A, Binder J M, Bhaskar M K, Sukachev D D, Sipahigil A, Evans R E, Nguyen C T and Lukin M D 2017 Phys. Rev. B 96 081201
|
[21] |
Ekimov E A, Lyapin S G, Boldyrev K N, Kondrin M V, Khmelnitskiy R, Gavva V A, Kotereva T V and Popova M N 2015 Jetp Lett. 102 701
|
[22] |
Palyanov Y N, Kupriyanov I N, Borzdov Y M, Khokhryakov A F and Surovtsev N V 2016 Cryst. Growth & Design. 16 3510
|
[23] |
Sedov V, Martyanov A, Savin S, Bushuev A, Bushuev E, Khomich A, Kudryavtsev O, Krivobok V, Nikolaev S and Ralchenko V 2018 Diamond Relat. Mater. 90 47
|
[24] |
Iwasaki T, Ishibashi F, Miyamoto Y, Doi Y, Kobayashi S, Miyazaki T, Tahara K, Jahnke K D, Rogers L J, Naydenov B and Hatano M 2015 Sci. Reports. 5 12882
|
[25] |
Rabeau J R, Huntington S T, Greentree A D and Prawer S 2005 Appl. Phys. Lett. 86 134104
|
[26] |
Aharonovich I and Neu E 2014 Adv. Opt. Mater. 2 911
|
[27] |
Bühler J and Prior Y 2000 J. Cryst. Growth. 209 779
|
[28] |
Mei Y S, Chen C K, Jiang M Y, Li X, Ruan Y L and Hu X J 2019 Chin. Phys. B 28 016101
|
[29] |
Chen C K, Mei Y S, Cui J M, Li X, Jiang M Y, Lu S H and Hu X J 2018 Carbon 139 982
|
[30] |
Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
|
[31] |
Huang K, Hu X J, Xu H, Shen Y G and Khomich A 2014 Appl. Surf. Sci. 317 11
|
[32] |
Yang Z C, Mei Y S, Chen C K, Ruan Y L and Hu X J 2018 Chin. Phys. B 27 038101
|
[33] |
Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102
|
[34] |
Sails S R, Gardiner D J, Bowden M, Savage J and Rodway D 1996 Diamond Relat. Mater. 5 589
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|