Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054206    DOI: 10.1088/1674-1056/28/5/054206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses

Yan Li(李妍), Xinzhu Sang(桑新柱)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  

Supercontinuum generation (SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions (AOADCs) at the mid-infrared region in an AlGaAs strip waveguide are investigated numerically. The simulation results show that when the parabolic pulse is input, not only broader and higher-coherence SCG is obtained and a higher effective number of bits (ENOB) can be achieved, compared with the input pulse with hyperbolic-secant and Gaussian shaping. A four-bit quantization resolution is achieved along with a signal-to-noise ratio of 24.02 dB and an ENOB of 3.99 bit, and the required input peak power is 760 mW.

Keywords:  mid-infrared      supercontinuum generation      all-optical quantization  
Received:  05 December 2018      Revised:  17 February 2019      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Wi (Nonlinear waveguides)  
  78.55.Cr (III-V semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61307109 and 61475023).

Corresponding Authors:  Yan Li     E-mail:  liyanllyy@126.com

Cite this article: 

Yan Li(李妍), Xinzhu Sang(桑新柱) Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses 2019 Chin. Phys. B 28 054206

[1] Dai S X, Chen H G, Li M Z, Jiang J, Xu T F and Nie Q H J 2012 Infrared Laser Eng. 41 4847 (in Chinese) ISSN: 1007-2276
[2] Jonathan H, Price H V, Monro T M, Feng X and Richardson D J J 2007 J. Sel. Top. Quantum. Electron. 13 738
[3] Agrawal G P 2013 Nonlinear Fiber Opt. 5th edn., p. 388
[4] Li X, Chen W, Xue T F and Liao M S J 2014 Opt. Express 22 24179
[5] Han Y, Hou L T and Zhou G Y J 2012 Chin. Phys. Lett. 29 54208
[6] Hu H Y, Li W B and Dutta N K J 2013 Appl. Opt. 52 7336
[7] Swiderski J and Maria M J 2014 Opt. Lett. 39 910
[8] Fedotova O A and Herrmann J J 2006 Opt. Express 14 1512
[9] Xiang B X, W L and Ma Y J J 2017 Chin. Phys. Lett. 34 38
[10] Yu Y, Wang T, Ma P and Barry D V J 2013 Opt. Mater. Express 3 1075
[11] Karim M R, Rahman B M A and Agrawal G P J 2015 Opt. Express 23 6903
[12] Adachi S J 1985 J. Appl. Phys. 58 R1
[13] Zhang L J 2014 Nanophotonics 3 247
[14] Siviloglou G A, Suntsov S and Sorel M J 2006 Opt. Express 14 9377
[15] Jang P K and Sarangan A M J 2007 Opt. Lett. 32 536
[16] Wang G H and Zhang J K J 2018 Chin. Phys. B 27 027801
[17] Toshihiko Hirooka and Masataka Nakazawa J 2004 Opt. Lett. 29 498
[18] Wabnitz S, Finot C and Sysoliatin A 2007 CLEO, May 6-11, 2007, Baltimore, USA, p. CThQ3
[19] Finot C, Dudley J M and Kibler B J 2006 IEEE J. Sel. Top. Quantum Electron. 45 1482
[20] Huh J and Azaña J 2015 CLEO: Sci. Innovat. May 10-15, 2015, San Jose, USA, p. SM2P.6
[21] Kwon Y, Vazquez-Zuniga L A and Hong S 2013 Conference on Lasers and Electro-Optics/Pacific Rim June 30-July 4, 2013, Kyoto, Japan, p. WPB_20
[22] Finot C, Richardson D J and Parmigiani F J 2006 Opt. Express 14 7617
[23] Shulika O V, Sukhoivanov I A and Ramosortiz G J 2014 Nanophotonics 8 083890
[24] Parmigiani F, Petropoulos P, Ibsen M and Richardson D J J 2006 IEEE Photon. Technol. Lett. 18 829
[25] Sukhoivanov I A, Iakushev S O and Shulika O V J 2013 Opt. Express 21 17769
[26] Okamoto K, Nakazawa M and Hirooka T J 2008 Opt. Lett. 33 1102
[27] Valley G C J 2007 Opt. Express 15 1955
[28] Ikeda K, Abdul J M and Shu N J 2005 Opt. Express 13 4296
[29] Satoh T, Itoh K and Konishi T J 2013 IEICE Trans. Electron. 96 223
[30] Takahashi K, Matsui H and Nagashima T J 2013 Opt. Lett. 38 4864
[31] Konishi T, Tanimura K and Asano K J 2002 J. Opt. Soc. Am. B 19 2817
[32] Oda S, Maruta A and Kitayama K J 2004 IEEE Photon. Technol. Lett. 16 2587
[33] Kang Z, Yuan J H, Li S and Yu C X J 2013 Chin. Phys. B 22 114211
[34] Xiao P, Chen Y, Wu K, Chen J and Chen X 2014 Asia Communications and Photonics Conference, November 11-14, 2014, Shanghai, China, p. AF3C. 3
[35] Kang X, Yuan J H, Kang Z, Yu C X J 2015 Opt. Commun. 355 479
[36] Maruta A and Oda S J 2008 Opt. Photon. News 19 30
[37] Oda S I and Maruta A 2005 IEEE Photon. Technol. Lett. 17 465
[38] Oda S I and Maruta A 2005 Optical Fiber Communication Conference, March 6, 2005, Anaheim, USA, p. OThN3
[39] Kang S, Yuan J H and Kang Z J 2015 J. Opt. 17 085502
[40] J T Boyd J 1972 IEEE J. Sel. Top. Quantum Electron. 8 788
[41] Li F, Li Q, Yuan J H and Wai P K A J 2014 Opt. Express 22 27339
[42] Genty G, Surakka M and Turunen J J 2011 J. Opt. Soc. Am. B 28 1
[43] Yu K C S, Fehrembach A L and Lemarchand F 2011 Lasers & Electro-optics Europe, May 22-26, 2011, Munich, Germany, p. CK_P7
[44] Barh A, Ghosh S and Varshney R K J 2014 IEEE J. Sel. Top. Quantum Electron. 20 590
[45] Lavdas S, Driscoll J B and Jiang H J 2013 Opt. Lett. 38 3953
[46] Li P, Yi X and Liu X J 2016 Sci. Rep. 6 31903
[47] Li P, Sang L and Zhao D J 2017 J. Lightwave Technol. 35 5034
[48] Hawkins G, Sherwood R and Djotni K 2008 Proceedings of SPIE - The International Society for Optical Engineering, September 25, 2008, p. 710114
[49] Derelle S, Pardo F and Primot J 2012 SPIE 8424 45
[50] Tilden S J, Linnenbrink T E and Green P J S 1999 1999 IMTC/99 Proc. of the 16th Instrumentation and Technology Conf. 3
[51] Asgari S, Rajabloo H and Granpayeh N J 2018 Chin. Phys. B 27 084212
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[4] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[5] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[6] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[7] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[8] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[9] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[10] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[11] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[12] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[13] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[14] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[15] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
No Suggested Reading articles found!