Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028504    DOI: 10.1088/1674-1056/28/2/028504
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Development of long-wavelength infrared detector and its space-based application requirements

Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤)
Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
Abstract  

Infrared detection technology has greatly expanded the ability of mankind to study the earth and the universe. In recent years, the demand for long-wavelength infrared detectors is increasing for their advantages in exploring the earth and the universe. A variety of long-wavelength infrared detectors have been made based on thermal resistive effect, photoelectric effect, etc., in the past few decades. Remarkable achievements have been made in infrared materials, device fabrication, readout circuit, and device package. However, high performance long-wavelength infrared detectors, especially those for large format long-wavelength infrared detector focus plane array, are still unsatisfactory. Low noise, high detectivity, and large format long-wavelength infrared detector is necessary to satisfy space-based application requirements.

Keywords:  long-wavelength infrared detector      thermal detector      photon detector      space-based application  
Received:  21 September 2018      Revised:  17 November 2018      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.60.-q (Optoelectronic devices)  
Fund: 

Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51502337) and the Fund from China Academy of Space Technology.

Corresponding Authors:  Junku Liu     E-mail:  liujunku@qxslab.cn

Cite this article: 

Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤) Development of long-wavelength infrared detector and its space-based application requirements 2019 Chin. Phys. B 28 028504

[1] Rogalski A 2011 Infrared detectors, 2nd edn. (Boca Raton: Taylor & Francis)
[2] Rogalski A 2012 Opto-Electron. Rev. 20 279
[3] Hoffman A W, Love P J and Rosbeck J P 2004 Focal Plane Arrays for Space Telescopes (San Diego: SPIE Press) p. 194
[4] Rogalski A 2011 Advances in Infrared Photodetectors (Amsterdam: Academic Press)
[5] Rogalski A, Martyniuk P and Kopytko M 2017 Appl. Phys. Rev. 4 031304
[6] Gunapala S D, Rhiger D R and Jagadish C 2011 Advances in Infrared Photodetectors (Amsterdam: Academic Press)
[7] Schneider H and Liu H C 2007 Quantum Well Infrared Photodetectors: Physics and Applications (Berlin: Springer)
[8] Stapelbroek M G, Seib D H, Huffman J E and Florence R A 1995 Infrared Detectors and Instrumentation for Astronomy (Orlando: SPIE Press) p. 41
[9] Kruse P W 2001 Uncooled Thermal Imaging Arrays, Systems and Applications (Bellingham: SPIE Press)
[10] Migdall A, Polyakov S, Fan J and Bienfang J 2013 Single-Photon Generation and Detection: Experimental Methods in the Physical Sciences (Amsterdam: Elsevier)
[11] Nazemi J, Battaglia J, Brubaker R, Delamere M and Martin C 2012 Infrared Technology and Applications XXXVⅢ (Baltimore: SPIE Press) p. 83530B
[12] Loose M, Beletic J, Garnett J and Xu M 2007 Focal Plane Arrays for Space Telescopes Ⅲ (San Diego: SPIE Press, CA) p. 66900C
[13] Gunapala S D, Bandara S V, Liu J K, Hill C J, Rafol S B, Mumolo J M, Trinh J T, Tidrow M Z and LeVan P D 2010 D Infrared Technology and Applications XXXVI (San Diego: SPIE Press) p. 76600V
[14] Manurkar P, Ramezani-Darvish S, Nguyen B M, Razeghi M and Hubbs J 2010 Appl. Phys. Lett. 97 193505
[15] Li C, Han C J, Skidmore G D and Hess C 2010 D Infrared Technology and Applications XXXVI (San Diego: SPIE Press) p. 76600V
[16] Richards P L and McCreight C R 2005 Phys. Today 58 41
[17] Rieke G H 1997 Sensors, Systems, and Next-Generation Satellites (London: SPIE Press) p. 372
[18] D’Souza A I, Dawson L C, Anderson E J, Markum A D, Tennant W E, Bubulac L O, Zandian M, Pasko J G, McLevige W V, Edwall D E, Derr J W and Jandik J E 1997 Sensors, Systems, and Next-Generation Satellites (London: SPIE Press) p. 372
[19] Ninomiya Y and Fu B 2018 Ore Geol. Rev. in press
[20] Love P J, Hoffman A W, Lum N A, Ando K J, Rosbeck J, Ritchie W D, Therrien N J, Holcombe R S and Corrales E 2005 Focal Plane Arrays for Space Telescopes Ⅱ (San Diego: SPIE Press) p. 590209
[21] Norton P R 1999 Infrared Technology and Applications XXV (Orlando: SPIE Press) p. 652
[22] Chenette E R 1967 Adv. Electron. Electron. Phys. 23 303
[23] Lawson W D, Nielsen S, Putley E H and Young A S 2007 J. Crystal Growth 301-302 268
[24] Schmit J L and Wood R A 1982 J. Crystal Growth 56 485
[25] Carmody M, Pasko J G, Edwall D, Piquette E, Kangas M, Freeman S, Arias J, Jacobs R, Mason W, Stoltz A, Chen Y and Dhar N K 2008 J. Electron. Mater. 37 1184
[26] Vilela M F, Lofgreen D D, Smith E P G, Newton M D, Venzor G M, Peterson J M, Franklin J J, Reddy M, Thai Y, Patten E A, Johnson S M and Tidrow M Z 2008 J. Electron. Mater. 37 1465
[27] He L, Chen L, Wu Y, Fu X L, Wang Y Z, Wu J, Yu M F, Yang J R, Ding R J, Hu X N, Li Y J and Zhang Q Y 2007 J. Crystal Growth 301-302 268
[28] Rogalski A 2017 Electro-Optical and Infrared Systems: Technology and Applications XIV (Warsaw: SPIE Press) p. 104330U
[29] Rogalski A 2017 Electro-Optical and Infrared Systems: Technology and Applications XIV (Warsaw: SPIE Press) p. 104330U
[30] Lin Y, Donetsky D, Wang D, Westerfeld D, Kipshidze G, Shterengas L, Sarney W L, Svensson S P and Belenky G 2010 23rd Annual Meeting of the IEEE Photonics Society, 7-11 November, 2010, Denver, USA, p. 637
[31] Gao Y Z, Gong X Y, Kan H, Aoyama M and Yamaguchi T 1999 Jpn. J. Appl. Phys. 38 1939
[32] Kim J D, Kim S, Wu D, Wojkowski J, Xu J, Piotrowski J, Bigan E and Razeghi M 1995 Appl. Phys. Lett. 67 2645
[33] Gao Y, Gong X, Wu G, Feng Y, Makino T, Kan H, Koyama T and Hayakawa Y 2013 Int. J. Miner. Metall. Mater. 20 393
[34] Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651
[35] Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545
[36] Wei Y, Gin A, Razeghi M and Brown G J 2002 Appl. Phys. Lett. 81 3675
[37] Gunapala S D, Ting D Z, Hill C J, Nguyen J, Soibel A, Rafol S B, Keo S A, Mumolo J M, Lee M C, Liu J K and Liao A 2010 23rd Annual Meeting of the IEEE Photonics Society, 7-11 November, 2010, Denver, USA, p. 637
[38] Delaunay P Y, Nosho B Z, Gurga A R, Terterian S and Rajavel R D 2017 Infrared Technology and Applications XLⅢ (Anaheim: SPIE Press) p. 101770T
[39] Jiang D, Guo F, Xiang W, Hao Y, Wang G, Xu Y, Yu Q, Niu Z and Zhao L 2014 International Symposium on Optoelectronic Technology and Application 2014: Infrared Technology and Applications (Beijing: SPIE Press) p. 93001L
[40] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 1986 Far-Infrared Science and Technology, Vol. 0666 (Quebec: SPIE Press) p. 81
[41] Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 48502
[42] Zhou Y, Chen J, Xu Z and He L 2016 Semicond. Sci. Technol. 31 085005
[43] LLeotin J 1986 Far-Infrared Science and Technology, Vol. 0666 (Quebec: SPIE Press) p. 81
[44] Kimata M IRFPA Development in Japan
[45] Onnes H 1911 Commun. Phys. Lab. Univ. Leiden 12 120
[46] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2004 Rev. Sci. Instrum. 13 281
[47] Andrews D H, Jr W F B, Ziegler W T and Blanchard E R 2004 Rev. Sci. Instrum. 13 281
[48] Josephson B D 2009 AIP Conf. Proc. 1185 135
[49] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 Nature 425 817
[50] Mazin B A 2009 AIP Conf. Proc. 1185 135
[51] Dauler E A, Kerman A J, Rosenberg D, Pan S, Grein M E, Molnar R J, Correa R E, Bawendi M G, Berggren K K, Moores J D and Boroson D M 2011 IEEE Photonic Society 24th Annual Meeting, 9-13 October, 2011, Arlington, USA, p. 350
[52] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2005 Cryogenic Particle Detection (Berlin: Springer-Verlag) pp. 63-150
[53] Zhang W, You L, Li H, Huang J, Lv C, Zhang L, Liu X, Wu J, Wang Z and Xie X 2017 Sci. China. Phys. Mech. Astron. 60 120314
[54] Irwin K D and Hilton G C 2005 Cryogenic Particle Detection (Berlin: Springer-Verlag) pp. 63-150
[55] Cecil T, Miceli A, Gades L, Datesman A, Quaranta O, Yefremenko V, Novosad V and Mazin B 2018 High Energy, Optical, and Infrared Detectors for Astronomy VⅢ (Austin: SPIE Press) p. 107091M
[56] Coiffard G, Mazin B A, Daal M, Zobrist N and Szypryt P 2018 High Energy, Optical, and Infrared Detectors for Astronomy VⅢ (Austin: SPIE Press) p. 107091M
[57] Austermann J, Beall J, Becker D, Hilton G C, Hubmayr J, Irwin K D, Li D, Mauskopf P, Pappas D P, Vale L, Lanen J V, Vissers M R and Wang Y 2015 26th International Symposium on Space Terahertz Technology, 16-18 March, 2015, Cambridge, USA
[58] Fyhrie A, Glenn J, Wheeler J, Day P, Eom B H, Leduc H and Skrutskie M 2013 Planets, Stars and Stellar Systems (Dordrecht: Springer Netherlands) p. 565
[59] Young E T 2013 Planets, Stars and Stellar Systems (Dordrecht: Springer Netherlands) p. 565
[60] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[61] Ishi T, Fujikata J, Makita K, Baba T and Ohashi K 2005 Jpn. J. Appl. Phys. 44 L364
[62] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D S, Saraswat K C and Miller D A B 2008 Nat. Photon. 2 226
[63] Boltasseva A and Atwater H A 2011 Science 331 290
[64] Obradov M, Jakšić Z and Vasiljević-Radović D 2014 J. Opt. 16 125011
[65] Wu W, Bonakdar A and Mohseni H 2010 Appl. Phys. Lett. 96 161107
[66] Katayama H, Sakai M, Kato E, Nakajima Y, Nakau K and Kimura T 2015 Infrared Technology and Applications XLI (Baltimore: SPIE Press) p. 94511D
[67] Greenhouse M A 2013 UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VI (San Diego: SPIE Press) p. 886004
[1] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[2] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[3] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[4] The intensity detection of single-photon detectors based on photon counting probability density statistics
Zijing Zhang(张子静), Long Wu(吴龙), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2017, 26(10): 104207.
[5] Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Ge Zhu(朱阁), Fu Zheng(郑福), Chao Wang(王超), Zhibin Sun(孙志斌), Guangjie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2016, 25(11): 118505.
[6] Detection efficiency characteristics of free-running InGaAs/InP single photon detector using passive quenching active reset IC
Fu Zheng(郑福), Chao Wang(王超), Zhi-Bin Sun(孙志斌), Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2016, 25(1): 010306.
[7] Countermeasure against probabilistic blinding attack in practical quantum key distribution systems
Qian Yong-Jun (钱泳君), Li Hong-Wei (李宏伟), He De-Yong (何德勇), Yin Zhen-Qiang (银振强), Zhang Chun-Mei (张春梅), Chen Wei (陈巍), Wang Shuang (王双), Han Zheng-Fu (韩正甫). Chin. Phys. B, 2015, 24(9): 090305.
[8] Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection
He Yu-Hao (何宇昊), Lü Chao-Lin (吕超林), Zhang Wei-Jun (张伟君), Zhang Lu (张露), Wu Jun-Jie (巫君杰), Chen Si-Jing (陈思井), You Li-Xing (尤立星), Wang Zhen (王镇). Chin. Phys. B, 2015, 24(6): 060303.
[9] Performance of superconducting nanowire single-photon detector with the fan coupling antenna array
Wang Yu-Jue (王玉珏), Ding Tian (丁天), Ma Hai-Qiang (马海强), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2014, 23(6): 060308.
[10] Resonant cavity-enhanced quantum dot field-effect transistor as a single-photon detector
Dong Yu (董宇), Wang Guang-Long (王广龙), Wang Hong-Pei (王红培), Ni Hai-Qiao (倪海桥), Chen Jian-Hui (陈建辉), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Yang Xiao-Hong (杨晓红), Niu Zhi-Chuan (牛智川). Chin. Phys. B, 2014, 23(10): 104209.
[11] Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector
Qiao Yun (乔赟), Liang Kun (梁琨), Chen Wen-Fei (陈文飞), Han De-Jun (韩德俊). Chin. Phys. B, 2013, 22(10): 108504.
[12] Performance of superconducting single photon detector with nano-antenna
Zhang Chao (张弨), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2012, 21(12): 120306.
[13] The analysis of the integral gated mode single photon detector
Wei Zheng-Jun (魏正军), Li Kai-Zhen (李开振), Zhou Peng (周 鹏), Wang Jin-Dong (王金东), Liao Chang-Jun (廖常俊), Guo Jian-Ping (郭健平), Liang Rui-Sheng (梁瑞生), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2008, 17(11): 4142-4148.
No Suggested Reading articles found!