|
|
Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection |
He Yu-Hao (何宇昊), Lü Chao-Lin (吕超林), Zhang Wei-Jun (张伟君), Zhang Lu (张露), Wu Jun-Jie (巫君杰), Chen Si-Jing (陈思井), You Li-Xing (尤立星), Wang Zhen (王镇) |
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract A new method to study the transient detection efficiency (DE) and pulse amplitude of superconducting nanowire single photon detectors (SNSPD) during the current recovery process is proposed–statistically analyzing the single photon response under photon illumination with a high repetition rate. The transient DE results match well with the DEs deduced from the static current dependence of DE combined with the waveform of a single-photon detection event. This proves that static measurement results can be used to analyze the transient current recovery process after a detection event. The results are relevant for understanding the current recovery process of SNSPDs after a detection event and for determining the counting rate of SNSPDs.
|
Received: 05 December 2014
Revised: 30 January 2015
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
Fund: Project supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04010200), the National Basic Research Program of China (Grant No. 2011CBA00202), and the National Natural Science Foundation of China (Grant No. 61401441). |
Corresponding Authors:
You Li-Xing
E-mail: lxyou@mail.sim.ac.cn
|
About author: 03.67.Dd; 42.60.Lh |
Cite this article:
He Yu-Hao (何宇昊), Lü Chao-Lin (吕超林), Zhang Wei-Jun (张伟君), Zhang Lu (张露), Wu Jun-Jie (巫君杰), Chen Si-Jing (陈思井), You Li-Xing (尤立星), Wang Zhen (王镇) Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection 2015 Chin. Phys. B 24 060303
|
[1] |
Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photon. 7 210
|
[2] |
Kerman A J, Rosenberg D, Molnar R J and Dauler E A 2013 J. Appl. Phys. 113 144511
|
[3] |
You L X, Yang X Y, He Y H, Zhang W X, Liu D K, Zhang W J, Zhang L, Zhang L, Liu X Y, Chen S J, Wang Z and Xie X M 2013 AIP Adv. 3
|
[4] |
Yang X Y, Li H, Zhang W J, You L X, Zhang L, Liu X Y, Wang Z, Peng W, Xie X M and Jiang M H 2014 Opt. Express 22 16267
|
[5] |
Wang Y J, Ding T, Ma H Q and Jiao R Z 2014 Chin. Phys. B 23 060308
|
[6] |
Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legre M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurhart O, Langer T, Peev M and Zeilinger A 2011 Opt. Express 19 10387
|
[7] |
Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
|
[8] |
Chen S J, Liu D K, You L X, Wang Y L, Qiu L Q, Xie X M, Jiang M H, Chen T Y, Liu Y, Miki S and Wang Z 2013 Chin. Sci. Bull. 58 1145
|
[9] |
Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q and Pan J W 2014 Phys. Rev. Lett. 113 190501
|
[10] |
Murphy D V, Kansky J E, Grein M E, Schulein R T, Willis M M and Lafon R E 2014 Proc. SPIE 8971 89710V
|
[11] |
Chen S J, Liu D K, Zhang W X, You L X, He Y H, Zhang W J, Yang X Y, Wu G, Ren M, Zeng H P, Wang Z, Xie X M and Jiang M H 2013 Appl. Opt. 52 3241
|
[12] |
Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M and Berggren K K 2007 IEEE Trans. Appl. Supercond. 17 581
|
[13] |
Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol'tsman G and Voronov B 2006 Appl. Phys. Lett. 88 111116
|
[14] |
Zhao Q, Jia T, Gu M, Wan C, Zhang L, Xu W, Kang L, Chen J and Wu P 2014 Opt. Lett. 39 1869
|
[15] |
Miki S, Takeda M, Fujiwara M, Sasaki M, Otomo A and Wang Z 2009 Appl. Phys. Express 2 075002 Park C, Lu G, Zhang R J and Shin D Y 2014 J. Comput. Anal. Appl. 17 667
|
[16] |
Rosenberg D, Kerman A J, Molnar R J and Dauler E A 2013 Opt. Express 21 1440
|
[17] |
You L, Shen X and Yang X 2010 Chin. Sci. Bull. 55 441
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|