Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 025202    DOI: 10.1088/1674-1056/28/2/025202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling

Yi-Nan Wang(王一男)1, Shuai-Xing Li(李帅星)1, Yue Liu(刘悦)2, Li Wang(王莉)1
1 College of Science, Liaoning Shihua University, Fushun 113001, China;
2 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, China
Abstract  

A one-dimensional (1D) fluid simulation of dual frequency discharge in helium gas at atmospheric pressure is carried out to investigate the role of the secondary electron emission on the surfaces of the electrodes. In the simulation, electrons, ions of He+ and He2+, metastable atoms of Heast and metastable molecules of He2* are included. It is found that the secondary electron emission coefficient significantly influences plasma density and electric field as well as electron heating mechanisms and ionization rate. The particle densities increase with increasing SEE coefficient from 0 to 0.3 as well as the sheath's electric field and electron source. Moreover, the SEE coefficient also influences the electron heating mechanism and electron power dissipation in the plasma and both of them increase with increasing SEE coefficient within the range from 0 to 0.3 as a result of increasing of electron density.

Keywords:  dual frequency      secondary electron emission      atmospheric pressure discharge  
Received:  09 October 2018      Revised:  02 December 2018      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.65.-y (Plasma simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11505089).

Corresponding Authors:  Yue Liu     E-mail:  liuyue@dlut.edu.cn

Cite this article: 

Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉) Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling 2019 Chin. Phys. B 28 025202

[1] Goto H H, Lowe H D and Ohmi T 1993 IEEE Trans. Semicond. Manufacuring 6 58
[2] Booth J P, Curley G, Maric D and Chabert P 2010 Plasma Sources Sci. Technol. 19 015005
[3] Brian G H, Czarnetzki U, Brinkmann R P and Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202
[4] Bi Z H, Xu X, Liu Y X, Jiang X Z, Lu W Q and Wang Y N 2011 Plasma Sci. Technol. 13 181
[5] Schulze J, Donko Z, Schungel E and Czarnetzki U 2011 Plasma Source Sci. Technol. 20 045007
[6] Georgieva V, Bogaerts A and Gijbels R 2003 J. Appl. Phys. 94 3748
[7] Boyle P C, Ellingboe A R and Turner M M 2004 J. Phys. D: Appl. Phys. 37 697
[8] Zhang Z L and Nie Q Y 2015 The 3rd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST), October 25-28, 2015, Busan, Korea pp. 443-446
[9] Cao Z, Nie Q Y and Kong M G 2009 J. Phys. D: Appl. Phys. 42 222003
[10] Wang Q, Sun J Z, Zhang J H, Ding Z F and Wang D Z 2010 Phys. Plasma 17 053506
[11] Walsh J L and Kong M G 2008 Appl. Phys. Lett. 93 111501
[12] Waskoenig J and Gans T 2010 Appl. Phys. Lett. 96 181501
[13] Kim D B, Moon S Y, Jung H, Gweon B and Choec W 2010 Phys. Plasma 17 053508
[14] Zhang Z L, Lim J W M, Nie Q Y, Zhang X N and Jiang B H 2017 AIP Adv. 7 105313
[15] Liu Y, Peeters F J J, Starostin S A, Sanden M C M and Vries H W 2018 Plasma Sources Sci. Technol. 27 01LT01
[16] Greb A, Gibson A R, Niemi K, O'Connell D and Gans T 2015 Plasma Scources Sci. Technol. 24 044003
[17] Shang W L, Wang D Z and Zhang Y T 2008 Phys. Plasma 15 093903
[18] Larouci B, Bendella S and Belasri A 2018 Plasma Sci. Technol. 20 035403
[19] Yao C W, Ma H C, Chang Z S, Li P, Mu H B and Zhang G J 2017 Acta Phys. Sin. 66 025203 (in Chinese)
[20] Wang Y N, Li S X, Wang L, Jin Y, Zhang Y H and Liu Y 2018 Plasma Sci. Technol. 20 115402
[21] Wang Q, Sun J Z and Wang D Z 2009 Phys. Plasma 16 043503
[22] Zhu X M and Kong M G 2005 J. Appl. Phys. 97 083301
[23] Zhang Y T and Cui S Y 2011 Phys. Plasma 18 083509
[24] Baars-Hibbe L, Sichler P, Schrader C, et al. 2005 J. Phys. D: Appl. Phys. 38 510
[25] Hagstrum H D 1960 Phys. Rev. 119 940
[26] Sosov Y and Theodosiou C E 2004 J. Appl. Phys. 95 4385
[27] Huang X J, Dai L and Guo Y, et al. 2015 Phys. Plasma 22 103515
[28] Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
[29] Liu Q, Liu Y, Samir T and Ma Z S 2014 Phys. Plasma 21 083511
[30] Choi E H, Lim J Y, Kim Y G, Ko J J, Kim D I, Lee C W and Cho G S 1999 J. Appl. Phys. 86 6525
[31] Korolov I, Derzsi A, Donko Z and Schulze J 2013 Appl. Phys. Lett. 103 064102
[32] Lafleur T, Chabert P and Booth J P 2014 Plasma Sources Sci. Technol. 23 035010
[1] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[2] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[3] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[4] Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve
Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照). Chin. Phys. B, 2019, 28(7): 077901.
[5] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[6] Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2017, 26(12): 125201.
[7] Sheath structure in plasma with two species of positive ions and secondary electrons
Xiao-Yun Zhao(赵晓云), Nong Xiang(项农), Jing Ou(欧靖), De-Hui Li(李德徽), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2016, 25(2): 025202.
[8] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
[9] A double toroidal analyzer for scanning probe electron energy spectrometer
Xu Chun-Kai (徐春凯), Zhang Pan-Ke (张盼科), Li Meng (郦盟), Chen Xiang-Jun (陈向军). Chin. Phys. B, 2014, 23(7): 073402.
[10] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[11] On characteristics of sheath damping near a dielectric wall with secondary electron emission
Yu Da-Ren(于达仁), Qing Shao-Wei(卿绍伟), Yan Guo-Jun(闫国军), and Duan Ping(段萍). Chin. Phys. B, 2011, 20(6): 065204.
[12] The charging stability of different silica glasses studied by measuring the secondary electron emission yield
Zhao Su-Ling(赵谡玲) and Bertrand Poumellec. Chin. Phys. B, 2011, 20(3): 037901.
[13] Strong optical feedback in birefringent dual frequency laser
Mao Wei (毛威), Zhang Shu-Lian (张书练). Chin. Phys. B, 2006, 15(2): 340-346.
[14] Incident angle dependence of secondary electron emission from carbon induced by swift H2+
Lu Qi-Liang (卢其亮), Zhou Zhu-Ying (周筑颖), Shi Li-Qun (施立群), Zhao Guo-Qing (赵国庆). Chin. Phys. B, 2005, 14(7): 1465-1470.
No Suggested Reading articles found!