Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 025201    DOI: 10.1088/1674-1056/28/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical simulation on modulational instability of ion-acoustic waves in plasma

Yi-Rong Ma(马艺荣)1,2, Lie-Juan Li(李烈娟)2, Wen-Shan Duan(段文山)2
1 Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 College of Physics and Electronic Engineering, Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070, China
Abstract  In this paper, the one-dimensional (1D) particle-in-cell (PIC) simulation is used to study the modulation instability of ion acoustic waves in electron-ion plasmas. The ion acoustic wave is described by using a nonlinear Schrödinger equation (NLSE) derived from the reductive perturbation method. Form our numerical simulations, we are able to demonstrate that, after the modulation, the amplitude increases steadily over time. Furthermore, by comparing the numerical results with traditional analytical solutions, we acquire the application scope for the reductive perturbation method to obtain the NLSE. We also find this method can also be extended to other fields such as fluid dynamics, nonlinear optics, solid state physics, and the Bose-Einstein condensate to validate the application scope of the results from the traditional perturbation method.
Keywords:  modulational instability      particle-in-cell simulation      the reductive perturbation method  
Received:  16 October 2018      Revised:  29 November 2018      Accepted manuscript online: 
PACS:  52.27.Aj (Single-component, electron-positive-ion plasmas)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675014).
Corresponding Authors:  Wen-Shan Duan     E-mail:  duanws@126.com

Cite this article: 

Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山) Numerical simulation on modulational instability of ion-acoustic waves in plasma 2019 Chin. Phys. B 28 025201

[1] Misra A P and Chowdhury A R 2016 Mod. Phys. Lett. B 13 1650312
[2] Xue J and Lang H 2003 Phys. Plasmas 10 339
[3] Zhao C, Gao Y T, Lan Z Z, Yang J W and Su C Q 2016 Mod. Phys. Lett. B 13 1650312
[4] Amin M R, Morfill G E and Shukla P K 2006 Phys. Plasmas 13 052117
[5] Chhabra R S and Sharma S R 1986 Phys. Fluids 29 128
[6] Verheest F 2000 Waves and instabilities in dusty space plasmas (Dordrech: Kluwer Academic Publishers) pp. 127-147
[7] Delande D and Sacha K 2014 Phys. Rev. Lett. 112 040402
[8] Zhang H, Qi X, Duan W S and Yang L 2015 Sci. Rep. 5 14239
[9] Remoissenet M 1996 Waves Called Solitons (New York: SpringerVerlag) pp. 88-122
[10] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 543
[11] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[12] Kourakis I, Esfandyari-Kalejahi A, Mehdipoor M and Shukla P K 2006 Phys. Plasmas 13 052117
[13] Mahmood S, Siddiqui S and Jehan N 2011 Phys. Plasmas 18 052309
[14] Fried B D and Gould R W 1961 Phys. Fluids 4 139
[15] Qi X, Xu Y X, Zhao X Y, Zhang L Y, Duan W S and Yang L 2015 IEEE Trans. Plasma Sci. 43 3815
[16] Taniuti T and Yajima N 1969 J. Math. Phys. 10 1369
[17] Watanabe S 1977 J. Plasma Phys. 17 487
[18] Couede L, Nosenk V, Ivlev A V, Zhdanov S K, Thomas H M and Morfill G E 2010 Phys. Rev. Lett. 104 195001
[19] Hasegawa A 1989 Modulational Instability (Berlin, Heidelberg: Springer) pp. 56-62
[20] Yashvir, Bhatnagar T N and Sharma S R 1985 J. Plasma Phys. 33 209
[21] Mishra M K, Chhabra R S and Sharma S R 1994 Phys. Plasmas 1 70
[22] Stenflo L, Shukla P K and Tsintsadze N L 1994 Phys. Lett. A 191 159
[23] Birdsall C K and Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) Part. 2
[24] Qi X, Xu Y X, Duan W S and Yang L 2014 Phys. Plasmas 21 013702
[25] Misra A P and Chowdhury A R 2006 Phys. Plasmas 13 072305
[26] Bains A, Tribeche M and Ng C S 2013 Astrophys. Space Sci. 343 621
[27] Kourakis I and Shukla P K 2003 Phys. Plasmas 10 3459
[28] Kourakis I and Shukla P K 2005 Nonlinear Processes in Geophysics 12 407
[29] El-Taibany W F, El-Bedwehy N A and El-Shamy E F 2011 Plasma Phys. 18 033703
[30] Liu W Y, Luo W, Yuan T, Yu J Y and Chen M 2018 Chin. Phys. B 27 105202
[31] Liu C S, Han H Y, Peng X Q 2010 Chin. Phys. B 19 035201
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[4] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[5] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[6] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[7] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[8] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[9] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[10] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[11] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[12] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
[13] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[14] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[15] Modeling of nonlinear envelope solitons in strongly coupled dusty plasmas: Instability and collision
S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, N. A. Zedan. Chin. Phys. B, 2015, 24(3): 035201.
No Suggested Reading articles found!